On Kreimer's Hopf algebra structure of Feynman graphs

被引:18
作者
Krajewski, T
Wulkenhaar, R
机构
[1] CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille 9, France
[2] Univ Aix Marseille 1, F-13331 Marseille 3, France
[3] Ecole Normale Super Lyon, F-69364 Lyon, France
[4] Univ Leipzig, D-7010 Leipzig, Germany
来源
EUROPEAN PHYSICAL JOURNAL C | 1999年 / 7卷 / 04期
关键词
Field Theory; Linear Combination; Quantum Field Theory; Hopf Algebra; Algebra Structure;
D O I
10.1007/s100529801037
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We reinvestigate Kreimer's Hopf algebra structure of perturbative quantum field theories with a special emphasis on overlapping divergences. Kreimer first disentangles overlapping divergences into a linear combination of disjoint and nested ones and then tackles that linear combination by the Hopf algebra operations. We present a formulation where the Hopf algebra operations are directly defined on any type of divergence. We explain the precise relation to Kreimer's Hopf algebra and obtain thereby a characterization of their primitive elements.
引用
收藏
页码:697 / 708
页数:12
相关论文
共 11 条
[1]  
Bogoliubov N.N., 1980, Introduction to theory of quantized fields
[2]   UBER DIE MULTIPLIKATION DER KAUSALFUNKTIONEN IN DER QUANTENTHEORIE DER FELDER [J].
BOGOLIUBOW, NN ;
PARASIUK, OS .
ACTA MATHEMATICA, 1957, 97 (3-4) :227-266
[3]  
CONNES A, IN PRESS COMM MATH P
[4]  
CONNES A, MATHDG9806109
[5]  
Hepp K., 1966, Commun. Math. Phys., V2, P301, DOI DOI 10.1007/BF01773358
[6]  
Itzykson C., 1980, Quantum field theory
[7]   Renormalization and knot theory [J].
Kreimer, D .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1997, 6 (04) :479-581
[8]  
KREIMER D, HEPTH9810022
[9]  
KREIMER D, QALG9707029
[10]   CONVERGENCE OF BOGOLIUBOVS METHOD OF RENORMALIZATION IN MOMENTUM SPACE [J].
ZIMMERMANN, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 15 (03) :208-+