Membrane-bound ARF1 peptide: interpretation of neutron diffraction data by molecular dynamics simulation methods

被引:4
作者
Balali-Mood, K
Harroun, TA
Bradshaw, JP [1 ]
机构
[1] Univ Edinburgh, Vet Biomed Sci, Royal Dick Sch Vet Studies, Coll Med & Vet Med, Edinburgh EH9 1QH, Midlothian, Scotland
[2] CNR, Chalk River Labs, Neutron Program Mat Res, Chalk River, ON, Canada
关键词
adenosine diphosphate ribosylation factor; phospholipid bilayers; molecular dynamics simulation; neutron diffraction;
D O I
10.1080/09687860500220148
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Adenosine diphosphate ribosylation factor-1 (ARF1) is activated by cell membrane binding of a self-folding N-terminal domain. We have previously presented four possible conformations of the membrane bound, human ARF1 N-terminal peptide in planar lipid bilayers of DOPC and DOPG ( 7: 3 molar ratio), determined from lamellar neutron diffraction and circular dichroism data. In this paper we analyse the four possible conformations by molecular dynamics simulations. The aim of these simulations was to use MD to distinguish which of the four possible membrane bound structures was the most likely. The most likely conformation was determined according to the following criteria: ( a) location of label positions on the peptide in relation to the bilayer, (b) lowest mean square displacement from the initial structure, ( c) lowest system energy, (d) most peptide-lipid headgroup hydrogen bonding, (e) analysis of phi/psi angles of the peptide. These findings demonstrate the application of molecular dynamics simulations to explore neutron diffraction data.
引用
收藏
页码:379 / 388
页数:10
相关论文
共 33 条
[21]   Molecular view of hexagonal phase formation in phospholipid membranes [J].
Marrink, SJ ;
Mark, AE .
BIOPHYSICAL JOURNAL, 2004, 87 (06) :3894-3900
[22]   Molecular simulation of dioleoylphosphatidylcholine lipid bilayers at differing levels of hydration [J].
Mashl, RJ ;
Scott, HL ;
Subramaniam, S ;
Jakobsson, E .
BIOPHYSICAL JOURNAL, 2001, 81 (06) :3005-3015
[23]  
Ménétrey J, 2000, NAT STRUCT BIOL, V7, P466
[24]   Dynamical properties of a hydrated lipid bilayer from a multinanosecond molecular dynamics simulation [J].
Moore, PB ;
Lopez, CF ;
Klein, ML .
BIOPHYSICAL JOURNAL, 2001, 81 (05) :2484-2494
[25]   Lipid bilayer perturbations around a transmembrane nanotube: A coarse grain molecular dynamics study [J].
Nielsen, SO ;
Ensing, B ;
Ortiz, V ;
Moore, PB ;
Klein, ML .
BIOPHYSICAL JOURNAL, 2005, 88 (06) :3822-3828
[26]   Anchoring of a monotopic membrane protein:: the binding of prostaglandin H2 synthase-1 to the surface of a phospholipid bilayer [J].
Nina, M ;
Bernèche, S ;
Roux, B .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2000, 29 (06) :439-454
[27]   Molecular dynamics of synthetic leucine-serine ion channels in a phospholipid membrane [J].
Randa, HS ;
Forrest, LR ;
Voth, GA ;
Sansom, MSP .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2400-2410
[28]  
RANDAZZO PA, 2000, SCI STKE, V1, P59
[29]   Molecular dynamics simulations of membranes with embedded proteins and peptides: porin, alamethicin and influenza virus M2 [J].
Sansom, MSP ;
Tieleman, DP ;
Forrest, LR ;
Berendsen, HJC .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1998, 26 (03) :438-443
[30]   Modeling the lipid component of membranes [J].
Scott, HL .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (04) :495-502