Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction

被引:56
作者
Sun, Zhehao [1 ]
Yin, Hang [1 ]
Liu, Kaili [1 ]
Cheng, Shuwen [2 ]
Li, Gang Kevin [3 ]
Kawi, Sibudjing [2 ]
Zhao, Haitao [4 ]
Jia, Guohua [5 ]
Yin, Zongyou [1 ]
机构
[1] Australian Natl Univ, Res Sch Chem, Canberra, ACT 2601, Australia
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore, Singapore
[3] Univ Melbourne, Dept Chem Engn, Melbourne, Vic, Australia
[4] Chinese Acad Sci, Mat Interfaces Ctr, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[5] Curtin Univ, Sch Mol & Life Sci, Curtin Inst Funct Mol & Interfaces, GPO Box U1987, Perth, WA 6845, Australia
来源
SMARTMAT | 2022年 / 3卷 / 01期
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
CO2 reduction reaction; DFT calculation; electrocatalyst; machine learning; rational design; DISCOVERY; CATALYSIS; SURFACE; INTERFACE;
D O I
10.1002/smm2.1107
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the past decades, machine learning (ML) has impacted the field of electrocatalysis. Modern researchers have begun to take advantage of ML-based data-driven techniques to overcome the computational and experimental limitations to accelerate rational catalyst design. Hence, significant efforts have been made to perform ML to accelerate calculation and aid electrocatalyst design for CO2 reduction. This review discusses recent applications of ML to discover, design, and optimize novel electrocatalysts. First, insights into ML aided in accelerating calculation are presented. Then, ML aided in the rational design of the electrocatalyst is introduced, including establishing a data set/data source selection and validation of descriptor selection of ML algorithms validation and predictions of the model. Finally, the opportunities and future challenges are summarized for the future design of electrocatalyst for CO2 reduction with the assistance of ML.
引用
收藏
页码:68 / 83
页数:16
相关论文
共 65 条
  • [1] Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine
    Angelone, Davide
    Hammer, Alexander J. S.
    Rohrbach, Simon
    Krambeck, Stefanie
    Granda, Jaroslaw M.
    Wolf, Jakob
    Zalesskiy, Sergey
    Chisholm, Greig
    Cronin, Leroy
    [J]. NATURE CHEMISTRY, 2021, 13 (01) : 63 - +
  • [2] Toward a Design of Active Oxygen Evolution Catalysts: Insights from Automated Density Functional Theory Calculations and Machine Learning
    Back, Seoin
    Tran, Kevin
    Ulissi, Zachary W.
    [J]. ACS CATALYSIS, 2019, 9 (09): : 7651 - 7659
  • [3] Ruthenium-Catalyzed Reduction of Carbon Dioxide to Formaldehyde
    Bontemps, Sebastien
    Vendier, Laure
    Sabo-Etienne, Sylviane
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (11) : 4419 - 4425
  • [4] A mobile robotic chemist
    Burger, Benjamin
    Maffettone, Phillip M.
    Gusev, Vladimir V.
    Aitchison, Catherine M.
    Bai, Yang
    Wang, Xiaoyan
    Li, Xiaobo
    Alston, Ben M.
    Li, Buyi
    Clowes, Rob
    Rankin, Nicola
    Harris, Brandon
    Sprick, Reiner Sebastian
    Cooper, Andrew I.
    [J]. NATURE, 2020, 583 (7815) : 237 - +
  • [5] A Machine Learning Model on Simple Features for CO2 Reduction Electrocatalysts
    Chen, An
    Zhang, Xu
    Chen, Letian
    Yao, Sai
    Zhou, Zhen
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (41) : 22471 - 22478
  • [6] A Critical Review of Machine Learning of Energy Materials
    Chen, Chi
    Zuo, Yunxing
    Ye, Weike
    Li, Xiangguo
    Deng, Zhi
    Ong, Shyue Ping
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (08)
  • [7] Identifying Active Sites for CO2 Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale Simulations
    Chen, Yalu
    Huang, Yufeng
    Cheng, Tao
    Goddard, William A., III
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (29) : 11651 - 11657
  • [8] First-principles study on thermodynamic stability of the hybrid interfacial structure of LiMn2O4 cathode and carbonate electrolyte in Li-ion batteries
    Choi, Daehyeon
    Kang, Joonhee
    Park, Jinwoo
    Han, Byungchan
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (17) : 11592 - 11597
  • [9] A robotic platform for flow synthesis of organic compounds informed by AI planning
    Coley, Connor W.
    Thomas, Dale A., III
    Lummiss, Justin A. M.
    Jaworski, Jonathan N.
    Breen, Christopher P.
    Schultz, Victor
    Hart, Travis
    Fishman, Joshua S.
    Rogers, Luke
    Gao, Hanyu
    Hicklin, Robert W.
    Plehiers, Pieter P.
    Byington, Joshua
    Piotti, John S.
    Green, William H.
    Hart, A. John
    Jamison, Timothy F.
    Jensen, Klavs F.
    [J]. SCIENCE, 2019, 365 (6453) : 557 - +
  • [10] Catalysis of the electrochemical reduction of carbon dioxide
    Costentin, Cyrille
    Robert, Marc
    Saveant, Jean-Michel
    [J]. CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) : 2423 - 2436