A Machine Learning Model on Simple Features for CO2 Reduction Electrocatalysts

被引:172
作者
Chen, An [1 ]
Zhang, Xu [1 ]
Chen, Letian [1 ]
Yao, Sai [1 ]
Zhou, Zhen [1 ]
机构
[1] Nankai Univ, Renewable Energy Convers & Storage Ctr ReCast, Sch Mat Sci & Engn,Inst New Energy Mat Chem, Key Lab Adv Energy Mat Chem,Minist Educ, Tianjin 300350, Peoples R China
基金
中国博士后科学基金;
关键词
DENSITY-FUNCTIONAL THEORY; ELECTROREDUCTION; ATOM; CATALYSTS; DISCOVERY; METHANE; DESIGN; ALLOY;
D O I
10.1021/acs.jpcc.0c05964
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electroreduction of CO2 is one of the most potential ways to realize CO2 recycle and energy regeneration. The key to promoting this technology is the development of high-performance electrocatalysts. Generally, high-throughput computational screening contributes a lot to materials innovation, but still consumes much time and resource. To achieve efficient exploration of electrocatalysts for CO2 reduction, we created a machine learning model based on an extreme gradient boosting regression (XGBR) algorithm and simple features. Our screening model successfully and rapidly predicted the Gibbs free energy change of CO adsorption (Delta G(CO)) of 1060 atomically dispersed metal-nonmetal codoped graphene systems, and greatly reduced the research cost. The competitive reaction, the hydrogen evolution reaction (HER), is also discussed with respect to such a screening model. This work demonstrates the potential of machine learning methods and provides a convenient approach for the effective theoretical design of electrocatalysts for CO2 reduction.
引用
收藏
页码:22471 / 22478
页数:8
相关论文
共 48 条
[1]   Machine Learning Accelerated Recovery of the Cubic Structure in Mixed-Cation Perovskite Thin Films [J].
Ali, Adnan ;
Park, Heesoo ;
Mall, Raghvendra ;
Aissa, Brahim ;
Sanvito, Stefano ;
Bensmail, Halima ;
Belaidi, Abdelhak ;
El-Mellouhi, Fedwa .
CHEMISTRY OF MATERIALS, 2020, 32 (07) :2998-3006
[2]   Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements [J].
Back, Seoin ;
Lim, Juhyung ;
Kim, Na-Young ;
Kim, Yong-Hyun ;
Jung, Yousung .
CHEMICAL SCIENCE, 2017, 8 (02) :1090-1096
[3]   CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles [J].
Baturina, Olga A. ;
Lu, Qin ;
Padilla, Monica A. ;
Xin, Le ;
Li, Wenzhen ;
Serov, Alexey ;
Artyushkova, Kateryna ;
Atanassov, Plamen ;
Xu, Feng ;
Epshteyn, Albert ;
Brintlinger, Todd ;
Schuette, Mike ;
Collins, Greg E. .
ACS CATALYSIS, 2014, 4 (10) :3682-3695
[4]   Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper Nanowires [J].
Cao, Liang ;
Raciti, David ;
Li, Chenyang ;
Livi, Kenneth J. T. ;
Rottmann, Paul F. ;
Hemker, Kevin J. ;
Mueller, Tim ;
Wang, Chao .
ACS CATALYSIS, 2017, 7 (12) :8578-8587
[5]   Machine learning: Accelerating materials development for energy storage and conversion [J].
Chen, An ;
Zhang, Xu ;
Zhou, Zhen .
INFOMAT, 2020, 2 (03) :553-576
[6]  
Chen T., 2015, R package version 0.4-2 1(4), P1, DOI DOI 10.1145/2939672.2939785
[7]   Bifunctional Nickel-Nitrogen-Doped-Carbon-Supported Copper Electrocatalyst for CO2 Reduction [J].
Choukroun, Daniel ;
Daems, Nick ;
Kenis, Thomas ;
Van Everbroeck, Tim ;
Hereijgers, Jonas ;
Altantzis, Thomas ;
Bals, Sara ;
Cool, Pegie ;
Breugelmans, Tom .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (02) :1369-1381
[8]  
Feng BJ, 2016, NAT CHEM, V8, P564, DOI [10.1038/NCHEM.2491, 10.1038/nchem.2491]
[9]   Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture [J].
Fernandez, Michael ;
Boyd, Peter G. ;
Daff, Thomas D. ;
Aghaji, Mohammad Zein ;
Woo, Tom K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (17) :3056-3060
[10]   Prediction of Synthesis of 2D Metal Carbides and Nitrides (MXenes) and Their Precursors with Positive and Unlabeled Machine Learning [J].
Frey, Nathan C. ;
Wang, Jin ;
Bellido, Gabriel Ivan Vega ;
Anasori, Babak ;
Gogotsi, Yury ;
Shenoy, Vivek B. .
ACS NANO, 2019, 13 (03) :3031-3041