Noncondensate atoms in a trapped Bose gas

被引:34
作者
Javanainen, J
机构
[1] Department of Physics, University of Connecticut, Storrs, CT
来源
PHYSICAL REVIEW A | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevA.54.R3722
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We formulate Bogoliubov theory for a weakly interacting Bose-Einstein condensate confined to a spherically symmetric harmonic-oscillator potential. The theory is solved numerically by diagonalizing a Hamiltonian that is second order in boson creation and annihilation operators with the aid of a symplectic transformation. At zero temperature, the number of noncondensate atoms is well approximated by a heuristic expression based on Bogoliubov theory for free atoms.
引用
收藏
页码:R3722 / R3725
页数:4
相关论文
共 24 条
  • [11] GOLDSTEIN H, 1980, CLASSICAL MECHANICS
  • [12] Expansion of a Bose-Einstein condensate in a harmonic potential
    Holland, M
    Cooper, J
    [J]. PHYSICAL REVIEW A, 1996, 53 (04): : R1954 - R1957
  • [13] Interference of two condensates
    Hoston, W
    You, L
    [J]. PHYSICAL REVIEW A, 1996, 53 (06): : 4254 - 4256
  • [14] IMAMOGLU A, UNPUB
  • [15] Quantum phase of a Bose-Einstein condensate with an arbitrary number of atoms
    Javanainen, J
    Yoo, SM
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (02) : 161 - 164
  • [16] Collective excitations of a Bose-Einstein condensate in a dilute gas
    Jin, DS
    Ensher, JR
    Matthews, MR
    Wieman, CE
    Cornell, EA
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (03) : 420 - 423
  • [17] LIFSHITZ EM, 1980, STAT PHYSICS 2
  • [18] MAHAN GD, 1986, MANY PARTICLE PHYSIC
  • [19] Collective excitations of a Bose-Einstein condensate in a magnetic trap
    Mewes, MO
    Andrews, MR
    vanDruten, NJ
    Kurn, DM
    Durfee, DS
    Townsend, CG
    Ketterle, W
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (06) : 988 - 991
  • [20] Interference of Bose condensates
    Naraschewski, M
    Wallis, H
    Schenzle, A
    Cirac, JI
    Zoller, P
    [J]. PHYSICAL REVIEW A, 1996, 54 (03): : 2185 - 2196