High loading TiO2 and ZrO2 nanocrystals ensembles inside the mesopores of SBA-15:: preparation, texture and stability

被引:88
作者
Landau, MV
Vradman, L
Wang, XG
Titelman, L
机构
[1] Ben Gurion Univ Negev, Dept Chem Engn, Blechner Ctr Ind Catalysis & Proc Dev, IL-84105 Beer Sheva, Israel
[2] Sami Shamoon Coll Engn, Dept Chem Engn, IL-84100 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
mesostructured silica; titania; zirconia; nanocrystals; stability;
D O I
10.1016/j.micromeso.2004.09.023
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
TiO2 (30-80 wt.%) and ZrO2 (48-75 wt.%) were inserted inside the pores of SBA-15 mesostructured silica host by chemical solution decomposition (CSD) or internal hydrolysis (IH) of the corresponding alkoxides. Both methods yielded composites with 85-94% TiO2 crystallinity (anatase). In case of ZrO2, CSD yielded >95% crystallinity (tetragonal phase), while IH gave an amorphous ZrOx-phase that does not crystallize up to 1073 K. The guest Ti(Zr)-oxide phases did not block the SBA-15 pores, and their surface was fully accessible for nitrogen adsorption. Calcination in air of TiO2/SBA-15 and ZrO2/SBA-15 (CSD) composites up to 1073 K did not change the nanocrystals structure and slightly increased the domain size derived from XRD data from 5.0-8.5 to 6-10 nm for TiO2 (IH and CSD) and from 4.5 to 6.5 nm for ZrO2 (CSD). After the same treatment the crystals domain size of bulk reference TiO2 increased to > 100 nm with full conversion to rutile polymorph and of reference bulk ZrO2-to 20-25 nm with partial conversion to monoclinic modification. Thorough characterization of the texture, structure, location and dispersion by HRTEM, SAXS, EDS. SEM. XRD, N-2-adsorption methods allowed evaluation of the assembling mode of TiO2 and ZrO2 inside SBA-15 nanotubes: amorphous layer, ensemble of small 4-5 nm crystals (TiO2-IH and ZrO2-CSD) or single large 8.5 nm crystals (TiO2-CSD). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:117 / 129
页数:13
相关论文
共 64 条
[21]  
*INT CTR DIFFR DAT, 1992, POWD DIFFR FIL JCPDS
[22]   Localization of small metal (oxide) particles in SBA-15 using bright-field electron tomography [J].
Janssen, AH ;
Yang, CM ;
Wang, Y ;
Schüth, F ;
Koster, AJ ;
de Jong, KP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (38) :10552-10556
[23]   Syntheses of mesoporous silicas containing titania (Ti-SBA-15) by block copolymer templating [J].
Jung, YC ;
Yoo, GH ;
Cho, WJ ;
Ha, CS .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2002, 374 (01) :241-244
[24]   Thermostable sulfated 2-4 nm tetragonal ZrO2 with high loading in nanotubes of SBA-15:: a superior acidic catalytic material [J].
Landau, MV ;
Titelman, L ;
Vradman, L ;
Wilson, P .
CHEMICAL COMMUNICATIONS, 2003, (05) :594-595
[25]   Ultrasonically controlled deposition-precipitation - Co-MoHDS catalysts deposited on wide-pore MCM material [J].
Landau, MV ;
Vradman, L ;
Herskowitz, M ;
Koltypin, Y ;
Gedanken, A .
JOURNAL OF CATALYSIS, 2001, 201 (01) :22-36
[26]  
LANDAU MV, 2000, HDB POROUS SOLIDS, V3, P1677
[27]   Review on zirconia air-fuel ratio sensors for automotive applications [J].
Lee, JH .
JOURNAL OF MATERIALS SCIENCE, 2003, 38 (21) :4247-4257
[28]   Photoionization of N-alkylphenothiazines in titanosilicate mesoporous TiSBA-15 molecular sieves [J].
Luan, ZH ;
Bae, JY ;
Kevan, L .
MICROPOROUS AND MESOPOROUS MATERIALS, 2001, 48 (1-3) :189-194
[29]   Characterization of titanium-containing mesoporous silica molecular sieve SBA-15 and generation of paramagnetic hole and electron centers [J].
Luan, ZH ;
Kevan, L .
MICROPOROUS AND MESOPOROUS MATERIALS, 2001, 44 (44-45) :337-344
[30]   Superparamagnetic ceramic nanocomposites: Synthesis and pyrolysis of ring-opened poly(ferrocenylsilanes) inside periodic mesoporous silica [J].
MacLachlan, MJ ;
Ginzburg, M ;
Coombs, N ;
Raju, NP ;
Greedan, JE ;
Ozin, GA ;
Manners, I .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (16) :3878-3891