A first-principles analysis for sulfur tolerance of CeO2 in solid oxide fuel cells

被引:62
作者
Chen, Hsin-Tsung
Choi, YongMan
Liu, Meilin
Lin, M. C. [1 ]
机构
[1] Georgia Inst Technol, Ctr Innovat Fuel Cell & Battery Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Dept Chem, Atlanta, GA 30322 USA
[3] Natl Chiao Tung Univ, Ctr Interdisciplinary Mol Sci, Hsinchu 30010, Taiwan
关键词
D O I
10.1021/jp0705774
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanism for H2S-CeO2(111) interactions in solid oxide fuel cells (SOFCs) has been investigated by using periodic density functional theory (DFT) calculations. In order to properly characterize the effect of the localization of Ce-4f states on the interactions, DFT + U calculations were applied. Adsorption of H2S, SH, and atomic S was initially examined to locate energetically favorable intermediates. The species adsorb favorably at the Ce-top, O-top, and Ce-O bridging sites, respectively. Potential energy profiles for the H2S-CeO2 (111) interactions along the three product channels producing H-2, H2O, and SO2 were constructed using the nudged elastic band (NEB) method. Calculations show that H2S weakly bounds on CeO2(111) with a small binding energy, followed by dehydrogenation processes, forming surface sulfur species with an exothermicity of 29.9 kcal/mol. Molecular-level calculations demonstrated that the SO2-forming pathway is energetically most favorable.
引用
收藏
页码:11117 / 11122
页数:6
相关论文
共 58 条
[1]   Sulfur-tolerant materials for the hydrogen sulfide SOFC [J].
Aguilar, L ;
Zha, SW ;
Li, SW ;
Winnick, J ;
Liu, M .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (10) :A324-A326
[2]   A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels [J].
Aguilar, L ;
Zha, SW ;
Cheng, Z ;
Winnick, J ;
Liu, ML .
JOURNAL OF POWER SOURCES, 2004, 135 (1-2) :17-24
[3]   Advanced anodes for high-temperature fuel cells [J].
Atkinson, A ;
Barnett, S ;
Gorte, RJ ;
Irvine, JTS ;
Mcevoy, AJ ;
Mogensen, M ;
Singhal, SC ;
Vohs, J .
NATURE MATERIALS, 2004, 3 (01) :17-27
[4]   An FTIR study of surface ceria hydroxy groups during a redox process with H-2 [J].
Badri, A ;
Binet, C ;
Lavalley, JC .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (23) :4669-4673
[5]  
Barker EF, 1942, REV MOD PHYS, V14, P0202
[6]   Mechanisms of catalyst deactivation [J].
Bartholomew, CH .
APPLIED CATALYSIS A-GENERAL, 2001, 212 (1-2) :17-60
[7]   SULFUR POISONING OF METALS [J].
BARTHOLOMEW, CH ;
AGRAWAL, PK ;
KATZER, JR .
ADVANCES IN CATALYSIS, 1982, 31 :135-242
[8]   IR study of polycrystalline ceria properties in oxidised and reduced states [J].
Binet, C ;
Daturi, M ;
Lavalley, JC .
CATALYSIS TODAY, 1999, 50 (02) :207-225
[9]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[10]   A theoretical study of surface reduction mechanisms of CeO2 (111) and (110) by H2 [J].
Chen, Hsin-Tsung ;
Choi, Yong Man ;
Liu, Meilin ;
Lin, M. C. .
CHEMPHYSCHEM, 2007, 8 (06) :849-855