A review of the predictability and prediction of ENSO

被引:420
作者
Latif, M
Anderson, D
Barnett, T
Cane, M
Kleeman, R
Leetmaa, A
O'Brien, J
Rosati, A
Schneider, E
机构
[1] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[2] Clarendon Lab, Dept Atmospher Phys, Oxford OX20 1JE, England
[3] Univ Calif San Diego, Scripps Inst Oceanog, Div Climate Res, La Jolla, CA 92093 USA
[4] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10960 USA
[5] Bur Meteorol, Res Ctr, Melbourne, Vic 3001, Australia
[6] Natl Meteorol Ctr, Coupled Model Project, Camp Springs, MD 20746 USA
[7] Florida State Univ, Ctr Ocean Atmosphere Predict Studies, Tallahassee, FL 32306 USA
[8] Princeton Univ, NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA
[9] Ctr Ocean Land Atmosphere Studies, Calverton, MD 20705 USA
关键词
D O I
10.1029/97JC03413
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
A hierarchy of Fl Nino-Southern Oscillation (ENSO) prediction schemes has been developed during the Tropical Ocean-Global Atmosphere (TOGA) program which includes statistical schemes and physical models.The statistical models are, in general, based on linear statistical techniques and can be classified into models which use atmospheric (sea level pressure or surface wind) or oceanic (sea surface temperature or a measure of upper ocean heat content) quantities or a combination of oceanic and atmospheric quantities as predictors. The physical models consist of coupled ocean-atmosphere models of varying degrees of complexity, ranging from simplified coupled models of the "shallow water" type to coupled general circulation models. All models, statistical and physical, perform considerably better than the persistence forecast in predicting typical indices of ENSO on lead times of 6 to 12 months. The TOGA program can be regarded as a success from this perspective. However, despite the demonstrated predictability, little is known about ENSO predictability limits and the predictability of phenomena outside the tropical Pacific. Furthermore, the predictability of anomalous features known to be associated with ENSO (e.g., Indian monsoon and Sahel rainfall, southern African drought, and off-equatorial sea surface temperature) needs to be addressed in more detail. As well, the relative importance of different physical mechanisms (in the ocean or atmosphere) has yet to be established. A seasonal dependence in predictability is seen in many models, but the processes responsible for it are not fully understood, and its meaning is still a matter of scientific discussion. Likewise, a marked decadal variation in skill is observed, and the reasons for this are still under investigation. Finally, the different prediction models yield similar skills, although they are initialized quite differently. The reasons for these differences are also unclear.
引用
收藏
页码:14375 / 14393
页数:19
相关论文
共 174 条
  • [1] ENSO PREDICTION USING A DYNAMICAL OCEAN MODEL COUPLED TO STATISTICAL ATMOSPHERES
    BALMASEDA, MA
    ANDERSON, DLT
    DAVEY, MK
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1994, 46 (04) : 497 - 511
  • [2] BALMASEDA MA, 1995, J CLIMATE, V8, P2705, DOI 10.1175/1520-0442(1995)008<2705:DASDOE>2.0.CO
  • [3] 2
  • [4] ON THE PREDICTION OF THE EL-NINO OF 1986-1987
    BARNETT, T
    GRAHAM, N
    CANE, M
    ZEBIAK, S
    DOLAN, S
    OBRIEN, J
    LEGLER, D
    [J]. SCIENCE, 1988, 241 (4862) : 192 - 196
  • [5] FORECASTING GLOBAL ENSO-RELATED CLIMATE ANOMALIES
    BARNETT, TP
    BENGTSSON, L
    ARPE, K
    FLUGEL, M
    GRAHAM, N
    LATIF, M
    RITCHIE, J
    ROECKNER, E
    SCHLESE, U
    SCHULZWEIDA, U
    TYREE, M
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1994, 46 (04) : 381 - 397
  • [6] BARNETT TP, 1984, MON WEATHER REV, V112, P2380, DOI 10.1175/1520-0493(1984)112<2380:IOTMAP>2.0.CO
  • [7] 2
  • [8] BARNETT TP, 1995, J CLIMATE, V8, P1005, DOI 10.1175/1520-0442(1995)008<1005:MCCF>2.0.CO
  • [9] 2
  • [10] BARNETT TP, 1991, J CLIMATE, V4, P487, DOI 10.1175/1520-0442(1991)004<0487:OEP>2.0.CO