A priori bounds and multiple solutions for superlinear indefinite elliptic problems

被引:190
作者
Amann, H
Lopez-Gomez, J
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
superlinear elliptic boundary value problems; positive solutions; maximum principles; a priori estimates;
D O I
10.1006/jdeq.1998.3440
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study existence and multiplicity questions for positive solutions of second-order semilinear elliptic boundary value problems, where the nonlinearity is multiplied by a weight function which is allowed to change sign and vanish on sets of positive measure. We do not impose a variational structure, thus techniques from the calculus of variations are not applicable. Under various qualitative assumptions on the nonlinearity we establish a priori bounds and employ bifurcation and fixed point index theory to prove existence and multiplicity results for positive solutions. In an appendix we derive interior L-p-estimates for general elliptic systems of arbitrary order under minimal smoothness hypotheses. Special instances of these results are used in the derivation of a priori bounds. (C) 1998 Academic Press.
引用
收藏
页码:336 / 374
页数:39
相关论文
共 34 条
[1]   Elliptic problems with nonlinearities indefinite in sign [J].
Alama, S ;
Tarantello, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (01) :159-215
[3]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[4]  
AMANN H, 1999, UNPUB LINEAR QUASILI, V2
[5]  
AMANN H., 1994, DIFFERENTIAL INTEGRA, V3, P613
[6]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[7]  
[Anonymous], 1985, ANAL PARTIAL DIFFERE
[8]  
Berestycki H., 1995, Nonlinear Differ Equ Appl, V2, P553, DOI [DOI 10.1007/BF01210623, 10.1007/BF01210623]
[9]  
Berestycki H., 1994, Topol. Methods Nonlinear Anal, V4, P59, DOI [10.12775/TMNA.1994.023, DOI 10.12775/TMNA.1994.023]
[10]  
BONY JM, 1967, CR ACAD SCI A MATH, V265, P333