Prospects and challenges of organic/group IV nanomaterial solar cells

被引:40
作者
Song, Tao [1 ]
Lee, Shuit-Tong [2 ,3 ]
Sun, Baoquan [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
[2] City Univ Hong Kong, Ctr Superdiamond & Adv Films COSDAF, Hong Kong, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
WALL CARBON NANOTUBES; PROCESSABLE FUNCTIONALIZED GRAPHENE; MULTIPLE EXCITON GENERATION; POLYMER PHOTOVOLTAIC CELLS; FIELD-EFFECT TRANSISTORS; SINGLE-CRYSTAL SILICON; OPEN-CIRCUIT VOLTAGE; CONJUGATED POLYMERS; QUANTUM DOTS; OPTICAL-PROPERTIES;
D O I
10.1039/c2jm14943e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Organic/group IV nanomaterial-based solar cells attract wide research interest in the photovoltaic community because it can benefit from the advantages of both organic and group IV materials. Especially, hybrid composites of conjugated organic materials and nanostructured inorganic materials are potential candidates for cost-effective and efficient solar-energy-harvesting devices. This review highlights recent advances in organic photovoltaics (OPV) as well as organic-inorganic hybrid solar cells (HSCs) based on group IV nanomaterials, including nanostructured carbon and silicon materials which act as acceptors. The donor can be either small molecules or conjugated polymers. The carbon-based functional materials will vary from carbon nanotubes (CNTs) to new emerging graphene sheets, which do not include fullerene and its derivatives. The silicon nanostructures include free-standing silicon nanocrystals (NCs) and silicon nanowires (SiNWs).
引用
收藏
页码:4216 / 4232
页数:17
相关论文
共 216 条
[11]   Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices [J].
Arranz-Andres, Javier ;
Blau, Werner J. .
CARBON, 2008, 46 (15) :2067-2075
[12]   Role of Majority and Minority Carrier Barriers Silicon/Organic Hybrid Heterojunction Solar Cells [J].
Avasthi, Sushobhan ;
Lee, Stephanie ;
Loo, Yueh-Lin ;
Sturm, James C. .
ADVANCED MATERIALS, 2011, 23 (48) :5762-+
[13]   Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells [J].
Bailey, Christopher G. ;
Forbes, David V. ;
Raffaelle, Ryne P. ;
Hubbard, Seth M. .
APPLIED PHYSICS LETTERS, 2011, 98 (16)
[14]   Tuning the Electrical Properties of Si Nanowire Field-Effect Transistors by Molecular Engineering [J].
Bashouti, Muhammad Y. ;
Tung, Raymond T. ;
Haick, Hossam .
SMALL, 2009, 5 (23) :2761-2769
[15]   Multiple exciton generation in colloidal silicon nanocrystals [J].
Beard, Matthew C. ;
Knutsen, Kelly P. ;
Yu, Pingrong ;
Luther, Joseph M. ;
Song, Qing ;
Metzger, Wyatt K. ;
Ellingson, Randy J. ;
Nozik, Arthur J. .
NANO LETTERS, 2007, 7 (08) :2506-2512
[16]   Hybrid polymer solar cells based on zinc oxide [J].
Beek, WJE ;
Wienk, MM ;
Janssen, RAJ .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (29) :2985-2988
[17]   Self-Assembly and Its Impact on Interfacial Charge Transfer in Carbon Nanotube/P3HT Solar Cells [J].
Bernardi, Marco ;
Giulianini, Michele ;
Grossman, Jeffrey C. .
ACS NANO, 2010, 4 (11) :6599-6606
[18]   Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells [J].
Berson, Solenn ;
de Bettignies, Remi ;
Bailly, Severine ;
Guillerez, Stephane ;
Jousselme, Bruno .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3363-3370
[19]   Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices [J].
Bhattacharyya, S ;
Kymakis, E ;
Amaratunga, GAJ .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4819-4823
[20]   Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays [J].
Boettcher, Shannon W. ;
Warren, Emily L. ;
Putnam, Morgan C. ;
Santori, Elizabeth A. ;
Turner-Evans, Daniel ;
Kelzenberg, Michael D. ;
Walter, Michael G. ;
McKone, James R. ;
Brunschwig, Bruce S. ;
Atwater, Harry A. ;
Lewis, Nathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) :1216-1219