Telomere length regulation in mice is linked to a novel chromosome locus

被引:116
作者
Zhu, LX
Hathcock, KS [1 ]
Hande, P
Lansdorp, PM
Seldin, MF
Hodes, RJ
机构
[1] NCI, Expt Immunol Branch, NIH, Bethesda, MD 20892 USA
[2] Univ Calif Davis, Rowe Program Genet, Dept Biol Chem, Davis, CA 95616 USA
[3] Univ Calif Davis, Rowe Program Genet, Dept Med, Davis, CA 95616 USA
[4] British Columbia Canc Res Ctr, Terry Fox Lab Hematol Oncol, Vancouver, BC V5Z 1L3, Canada
[5] NIA, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1073/pnas.95.15.8648
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Little is known about the mechanisms that regulate species-specific telomere length, particularly in mammalian species. The genetic regulation of telomere length was therefore investigated by using two inter-fertile species of mice, which differ in their telomere length. Mus musculus (telomere length >25 kb) and Mus spretus (telomere length 5-15 kb) were used to generate F1 crosses and reciprocal backcrosses, which were then analyzed for regulation of telomere length. This analysis indicated that a dominant and trans-acting mechanism exists capable of extensive elongation of telomeres in somatic cells after fusion of parental germline cells with discrepant telomere lengths. A genome wide screen of interspecific crosses, using M. spretus as the recurrent parent, identified a 5-centimorgan region on distal chromosome 2 that predominantly controls the observed species-specific telomere length regulation. This locus is distinct from candidate genes encoding known telomere-binding proteins or telomerase components. These results demonstrate that an unidentified gene(s) mapped to distal chromosome 2 regulates telomere length in the mouse.
引用
收藏
页码:8648 / 8653
页数:6
相关论文
共 33 条
[1]   TELOMERE LENGTH PREDICTS REPLICATIVE CAPACITY OF HUMAN FIBROBLASTS [J].
ALLSOPP, RC ;
VAZIRI, H ;
PATTERSON, C ;
GOLDSTEIN, S ;
YOUNGLAI, EV ;
FUTCHER, AB ;
GREIDER, CW ;
HARLEY, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10114-10118
[2]   TELOMERASES [J].
BLACKBURN, EH .
ANNUAL REVIEW OF BIOCHEMISTRY, 1992, 61 :113-129
[3]   STRUCTURE AND FUNCTION OF TELOMERES [J].
BLACKBURN, EH .
NATURE, 1991, 350 (6319) :569-573
[4]   FUNCTIONAL-CHARACTERIZATION AND DEVELOPMENTAL REGULATION OF MOUSE TELOMERASE RNA [J].
BLASCO, MA ;
FUNK, W ;
VILLEPONTEAU, B ;
GREIDER, CW .
SCIENCE, 1995, 269 (5228) :1267-1270
[5]   Telomere shortening and tumor formation by mouse cells lacking telomerase RNA [J].
Blasco, MA ;
Lee, HW ;
Hande, MP ;
Samper, E ;
Lansdorp, PM ;
DePinho, RA ;
Greider, CW .
CELL, 1997, 91 (01) :25-34
[6]   Comparison of the human and mouse genes encoding the telomeric protein, TRF1: Chromosomal localization, expression and conserved protein domains [J].
Broccoli, D ;
Chong, L ;
Oelmann, S ;
Fernald, AA ;
Marziliano, N ;
vanSteensel, B ;
Kipling, D ;
LeBeau, MM ;
deLange, T .
HUMAN MOLECULAR GENETICS, 1997, 6 (01) :69-76
[7]   Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2 [J].
Broccoli, D ;
Smogorzewska, A ;
Chong, L ;
deLange, T .
NATURE GENETICS, 1997, 17 (02) :231-235
[8]   PINNING DOWN LOOSE ENDS - MAPPING TELOMERES AND FACTORS AFFECTING THEIR LENGTH [J].
BURR, B ;
BURR, FA ;
MATZ, EC ;
ROMEROSEVERSON, J .
PLANT CELL, 1992, 4 (08) :953-960
[9]   TELOMERE LENGTH AND REPLICATIVE AGING IN HUMAN VASCULAR TISSUES [J].
CHANG, E ;
HARLEY, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (24) :11190-11194
[10]   A HUMAN TELOMERIC PROTEIN [J].
CHONG, L ;
VANSTEENSEL, B ;
BROCCOLI, D ;
ERDJUMENTBROMAGE, H ;
HANISH, J ;
TEMPST, P ;
DELANGE, T .
SCIENCE, 1995, 270 (5242) :1663-1667