Novel Gaussian quantum-behaved particle swarm optimiser applied to electromagnetic design

被引:46
作者
Coelho, L. S. [1 ]
机构
[1] Pontificial Catholic Univ Parana, Ind & Syst Engn Grad Program, PPGEPS, PUCPR, BR-80215901 Curitiba, Parana, Brazil
关键词
D O I
10.1049/iet-smt:20060124
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Design of global optimisation approaches inspired by swarm intelligence is an emergent research area with population and evolution characteristics similar to those of evolutionary algorithms. However, the swarm intelligence concept differs in that it emphasises co-operative behaviour among group members. Particle swarm optimisation (PSO) is a population-based swarm intelligence algorithm driven by the simulation of a social psychological metaphor instead of survival of the fittest individual. Inspired by the classical PSO method and quantum mechanics theories, this work presents a novel quantum-behaved PSO (QPSO) approach using mutation operator with Gaussian probability distribution, called G-QPSO. The simulation results demonstrate good performance of the QPSO and G-QPSO in solving a significant benchmark problem in electromagnetic area, the shape design of Loney's solenoid benchmark problem.
引用
收藏
页码:290 / 294
页数:5
相关论文
共 22 条
[11]   Particle swarm optimization with Gaussian mutation [J].
Higashi, N ;
Iba, H .
PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, :72-79
[12]  
Krohling RA, 2004, CONF CYBERN INTELL S, P372
[13]   Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems [J].
Krohling, Renato A. ;
Coelho, Leandro dos Santos .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (06) :1407-1416
[14]  
Liu J, 2005, I C COMP SYST APPLIC
[15]  
MAGELE CH, 2006, TEAM BENCHMARK PROBL
[16]   Solving a class of continuous global optimization problems using quantum algorithms [J].
Protopopescu, V ;
Barhen, J .
PHYSICS LETTERS A, 2002, 296 (01) :9-14
[17]   Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J].
Ratnaweera, A ;
Halgamuge, SK ;
Watson, HC .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) :240-255
[18]   Visualizing particle swarm optimization - Gaussian particle swarm optimization [J].
Secrest, BR ;
Lamont, GB .
PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, :198-204
[19]  
Shi Y., 1998, Parameter selection in particle swarm optimization, P591, DOI DOI 10.1007/BFB0040810
[20]  
Sun J, 2005, IEEE SYS MAN CYBERN, P3049