SCOPmap: Automated assignment of protein structures to evolutionary superfamilies

被引:33
作者
Cheek, S
Qi, Y
Krishna, SS
Kinch, LN
Grishin, NV
机构
[1] Univ Texas, SW Med Ctr, Howard Hughes Med Inst, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
关键词
D O I
10.1186/1471-2105-5-197
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Inference of remote homology between proteins is very challenging and remains a prerogative of an expert. Thus a significant drawback to the use of evolutionary-based protein structure classifications is the difficulty in assigning new proteins to unique positions in the classification scheme with automatic methods. To address this issue, we have developed an algorithm to map protein domains to an existing structural classification scheme and have applied it to the SCOP database. Results: The general strategy employed by this algorithm is to combine the results of several existing sequence and structure comparison tools applied to a query protein of known structure in order to find the homologs already classified in SCOP database and thus determine classification assignments. The algorithm is able to map domains within newly solved structures to the appropriate SCOP superfamily level with similar to95% accuracy. Examples of correctly mapped remote homologs are discussed. The algorithm is also capable of identifying potential evolutionary relationships not specified in the SCOP database, thus helping to make it better. The strategy of the mapping algorithm is not limited to SCOP and can be applied to any other evolutionary-based classification scheme as well. SCOPmap is available for download. Conclusion: The SCOPmap program is useful for assigning domains in newly solved structures to appropriate superfamilies and for identifying evolutionary links between different superfamilies.
引用
收藏
页数:25
相关论文
共 56 条
[1]   The N-terminal domain of the human Rad51 protein binds DNA: Structure and a DNA binding surface as revealed by NMR [J].
Aihara, H ;
Ito, Y ;
Kurumizaka, H ;
Yokoyama, S ;
Shibata, T .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 290 (02) :495-504
[2]   Structural basis of chemokine sequestration by a herpesvirus decoy receptor [J].
Alexander, JM ;
Nelson, CA ;
van Berkel, V ;
Lau, EK ;
Studts, JM ;
Brett, TJ ;
Speck, SH ;
Handel, TM ;
Virgin, HW ;
Fremont, DH .
CELL, 2002, 111 (03) :343-356
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]  
[Anonymous], P 5 INT C MOL STRUCT
[5]   Crystal structure of Schizosaccharomyces pombe riboflavin kinase reveals a novel ATP and riboflavin-binding fold [J].
Bauer, S ;
Kemter, K ;
Bacher, A ;
Huber, R ;
Fischer, M ;
Steinbacher, S .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 326 (05) :1463-1473
[6]   Structural basis of transcription activation:: the CAP-αCTD-DNA complex [J].
Benoff, B ;
Yang, HW ;
Lawson, CL ;
Parkinson, G ;
Liu, JS ;
Blatter, E ;
Ebright, YW ;
Berman, HM ;
Ebright, RH .
SCIENCE, 2002, 297 (5586) :1562-1566
[7]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[8]   THE 2.0 A X-RAY CRYSTAL-STRUCTURE OF CHICKEN EGG-WHITE CYSTATIN AND ITS POSSIBLE MODE OF INTERACTION WITH CYSTEINE PROTEINASES [J].
BODE, W ;
ENGH, R ;
MUSIL, D ;
THIELE, U ;
HUBER, R ;
KARSHIKOV, A ;
BRZIN, J ;
KOS, J ;
TURK, V .
EMBO JOURNAL, 1988, 7 (08) :2593-2599
[9]   The ASTRAL compendium for protein structure and sequence analysis [J].
Brenner, SE ;
Koehl, P ;
Levitt, R .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :254-256
[10]   Structure of the human NF-κB p52 homodimer-DNA complex at 2.1 Å resolution [J].
Cramer, P ;
Larson, CJ ;
Verdine, GL ;
Müller, CW .
EMBO JOURNAL, 1997, 16 (23) :7078-7090