Correlation decay for an intermittent area-preserving map

被引:17
作者
Artuso, R
Prampolini, A
机构
[1] Ist Nazl Fis Nucl, Ist Nazl Fis Mat, Unita Milano, Sez Milano, I-20133 Milan, Italy
[2] Ist Sci Matemat Fis & Chim, I-22100 Como, Italy
关键词
D O I
10.1016/S0375-9601(98)00542-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an area-preserving map which is almost everywhere hyperbolic, with a single marginal fixed point. Correlation decay is studied both by direct simulation of autocorrelations of smooth observables and by recurrence statistics on longer time scales. While on the time scale on which correlations are observed directly results are consistent with exponential relaxation, a transition to power-law is observed in the "sticking" times statistics. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:407 / 411
页数:5
相关论文
共 27 条
[1]  
[Anonymous], 1975, Essentials of Pade Approximations
[2]  
[Anonymous], 1979, Monte Carlo Methods, DOI DOI 10.1007/978-94-009-5819-7
[3]   Anomalous diffusion in classical dynamical systems [J].
Artuso, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 290 (1-2) :37-47
[4]   Numerical experiments on billiards [J].
Artuso, R ;
Casati, G ;
Guarneri, I .
JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (1-2) :145-166
[5]  
ARTUSO R, UNPUB
[6]  
Baker George A., 1990, QUANTITATIVE THEORY
[7]   Resonances for intermittent systems [J].
Baladi, V. ;
Eckmann, J-P ;
Ruelle, D. .
NONLINEARITY, 1989, 2 (01) :119-135
[8]   CHAOS AND MIXING IN A GEOSTROPHIC FLOW [J].
BEHRINGER, RP ;
MEYERS, SD ;
SWINNEY, HL .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (05) :1243-1249
[9]   STATISTICAL PROPERTIES OF 2-DIMENSIONAL PERIODIC LORENTZ GAS WITH INFINITE HORIZON [J].
BLEHER, PM .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :315-373
[10]  
Bunimovich L. A., 1985, Soviet Physics - JETP, V62, P842