The complete set of genes encoding major intrinsic proteins in arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants

被引:613
作者
Johanson, U
Karlsson, M
Johansson, I
Gustavsson, S
Sjövall, S
Fraysse, L
Weig, AR
Kjellbom, P
机构
[1] Lund Univ, Dept Plant Biochem, SE-22100 Lund, Sweden
[2] Univ Bayreuth, Dept Plant Physiol, D-95447 Bayreuth, Germany
关键词
D O I
10.1104/pp.126.4.1358
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Major intrinsic proteins (MIPs) facilitate the passive transport of small polar molecules across membranes. MlPs constitute a very old family of proteins and different forms have been found in all kinds of living organisms, including bacteria, fungi, animals, and plants. In the genomic sequence of Arabidopsis, we have identified 35 different MIP-encoding genes. Based on sequence similarity, these 35 proteins are divided into four different subfamilies: plasma membrane intrinsic proteins, tonoplast intrinsic proteins, NOD26-like intrinsic proteins also called NOD26-like MIPs, and the recently discovered small basic intrinsic proteins. In Arabidopsis, there are 13 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, nine NOD26-like intrinsic proteins, and three small basic intrinsic proteins. The gene structure in general is conserved within each subfamily, although there is a tendency to lose introns. Based on phylogenetic comparisons of maize (Zea mays) and Arabidopsis MIPs (AtMIPs), it is argued that the general intron patterns in the subfamilies were formed before the split of monocotyledons and dicotyledons. Although the gene structure is unique for each subfamily, there is a common pattern in how transmembrane helices are encoded on the exons in three of the subfamilies. The nomenclature for plant MlPs varies widely between different species but also between subfamilies in the same species. Based on the phylogeny of all AtMIPs, a new and more consistent nomenclature is proposed. The complete set of AtMIPs, together with the new nomenclature, will facilitate the isolation, classification, and labeling of plant MIPs from other species.
引用
收藏
页码:1358 / 1369
页数:12
相关论文
共 50 条
[1]  
Arumuganathan K., 1991, PLANT MOL BIOL REP, V9, P211, DOI DOI 10.1007/BF02672069
[2]   Aquaporin localization - how valid are the TIP and PIP labels? [J].
Barkla, BJ ;
Vera-Estrella, R ;
Pantoja, O ;
Kirch, HH ;
Bohnert, HJ .
TRENDS IN PLANT SCIENCE, 1999, 4 (03) :86-88
[3]   DNA amounts in two samples of angiosperm weeds [J].
Bennett, MD ;
Leitch, IJ ;
Hanson, L .
ANNALS OF BOTANY, 1998, 82 :121-134
[4]  
Bennetzen JL, 1997, PLANT CELL, V9, P1509, DOI 10.1105/tpc.9.9.1509
[5]   The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol [J].
Biela, A ;
Grote, K ;
Otto, B ;
Hoth, S ;
Hedrich, R ;
Kaldenhoff, R .
PLANT JOURNAL, 1999, 18 (05) :565-570
[6]   Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity [J].
Chaumont, F ;
Barrieu, F ;
Jung, R ;
Chrispeels, MJ .
PLANT PHYSIOLOGY, 2000, 122 (04) :1025-1034
[7]   Aquaporins constitute a large and highly divergent protein family in maize [J].
Chaumont, F ;
Barrieu, F ;
Wojcik, E ;
Chrispeels, MJ ;
Jung, R .
PLANT PHYSIOLOGY, 2001, 125 (03) :1206-1215
[8]   Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site [J].
Daniels, MJ ;
Chaumont, F ;
Mirkov, TE ;
Chrispeels, MJ .
PLANT CELL, 1996, 8 (04) :587-599
[9]   Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties [J].
Dean, RM ;
Rivers, RL ;
Zeidel, ML ;
Roberts, DM .
BIOCHEMISTRY, 1999, 38 (01) :347-353
[10]   NODULIN-26, A PERIBACTEROID MEMBRANE NODULIN IS EXPRESSED INDEPENDENTLY OF THE DEVELOPMENT OF THE PERIBACTEROID COMPARTMENT [J].
FORTIN, MG ;
MORRISON, NA ;
VERMA, DPS .
NUCLEIC ACIDS RESEARCH, 1987, 15 (02) :813-824