Monolithic integration of mass sensing nano-cantilevers with CMOS circuitry

被引:37
作者
Davis, ZJ
Abadal, G
Helbo, B
Hansen, O
Campabadal, F
Pérez-Murano, F
Esteve, J
Figueras, E
Verd, J
Barniol, N
Boisen, A
机构
[1] Tech Univ Denmark, Mikroelekt Centret, DK-2800 Lyngby, Denmark
[2] Univ Autonoma Barcelona, Dept Elect Engn, Bellaterra 08193, Spain
[3] CSIC, CNM, Inst Microelect Barcelona, E-08193 Barcelona, Spain
关键词
monolithic integration; mass sensing nano-cantilevers; CMOS circuitry;
D O I
10.1016/S0924-4247(03)00208-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Miniaturization of cantilever dimensions will increase both the mass and spatial resolution of a resonating cantilever-based mass sensor, which monitors the mass change of the cantilever by measuring its resonant frequency shift. A fabrication method for nanometer-sized cantilevers with electrostatic excitation and integrated capacitive readout is introduced. The dynamic behavior of the nanometer-sized cantilever is characterized at atmospheric pressure using optical microscopy and in vacuum using scanning electron microscopy (SEM). A monolithic integration method for combining the nano-cantilevers with CMOS circuitry is described in detail. The circuitry is used to enhance the capacitive readout. The fabrication results, showing integrated nano-cantilevers with a CMOS analog amplification circuit, are presented along with preliminary electrical characterization of the device. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:311 / 319
页数:9
相关论文
共 12 条
[1]   Combined laser and atomic force microscope lithography on aluminum: Mask fabrication for nanoelectromechanical systems [J].
Abadal, G ;
Boisen, A ;
Davis, ZJ ;
Hansen, O ;
Grey, F .
APPLIED PHYSICS LETTERS, 1999, 74 (21) :3206-3208
[2]   Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection [J].
Abadal, G ;
Davis, ZJ ;
Helbo, B ;
Borrisé, X ;
Ruiz, R ;
Boisen, A ;
Campabadal, F ;
Esteve, J ;
Figueras, E ;
Pérez-Murano, F ;
Barniol, N .
NANOTECHNOLOGY, 2001, 12 (02) :100-104
[3]  
ANDREWS M, 1992, SENSOR ACTUAT A-PHYS, V36, P320
[4]   Nano-lithography with atoms [J].
Bell, AS ;
Brezger, B ;
Drodofsky, U ;
Nowak, S ;
Pfau, T ;
Stuhler, J ;
Schulze, T ;
Mlynek, J .
SURFACE SCIENCE, 1999, 433 :40-47
[5]   Fabrication of submicron suspended structures by laser and atomic force microscopy lithography on aluminum combined with reactive ion etching [J].
Boisen, A ;
Birkelund, K ;
Hansen, O ;
Grey, F .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06) :2977-2981
[6]   Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals [J].
Cleland, AN ;
Roukes, ML .
APPLIED PHYSICS LETTERS, 1996, 69 (18) :2653-2655
[7]  
Corman T, 1997, SENSOR ACTUAT A-PHYS, V61, P249, DOI 10.1016/S0924-4247(97)80270-1
[8]   Fabrication and characterization of nanoresonating devices for mass detection [J].
Davis, ZJ ;
Abadal, G ;
Kuhn, O ;
Hansen, O ;
Grey, F ;
Boisen, A .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (02) :612-616
[9]   Atom lithography using light forces [J].
Drodofsky, U ;
Drewsen, M ;
Pfau, T ;
Nowack, S ;
Mlynek, J .
MICROELECTRONIC ENGINEERING, 1996, 30 (1-4) :383-386
[10]  
Durig U, 1997, J APPL PHYS, V82, P3641, DOI 10.1063/1.365726