Insulin resistance in the skeletal muscle of women with PCOS involves intrinsic and acquired defects in insulin signaling

被引:198
作者
Corbould, A
Kim, YB
Youngren, JF
Pender, C
Kahn, BB
Lee, A
Dunaif, A
机构
[1] Northwestern Univ, Feinberg Sch Med, Div Endocrinol Metab & Mol Med, Chicago, IL 60611 USA
[2] Harvard Univ, Brigham & Womens Hosp, Sch Med, Div Womens Hlth, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Div Endocrinol Diabet & Metab, Boston, MA USA
[4] Univ Calif San Francisco, Mt Zion Med Ctr, Div Diabet & Endocrine Res, San Francisco, CA 94143 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM | 2005年 / 288卷 / 05期
关键词
polycystic ovary syndrome; myotubes; glucose transport; glucose transporter 1; insulin receptor substrate; serine phosphorylation;
D O I
10.1152/ajpendo.00361.2004
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Insulin resistance in polycystic ovary syndrome (PCOS) is due to a postbinding defect in signaling that persists in cultured skin fibroblasts and is associated with constitutive serine phosphorylation of the insulin receptor (IR). Cultured skeletal muscle from obese women with PCOS and age- and body mass index-matched control women (n = 10/group) was studied to determine whether signaling defects observed in this tissue in vivo were intrinsic or acquired. Basal and insulin-stimulated glucose transport and GLUT1 abundance were significantly increased in cultured myotubes from women with PCOS. Neither IR beta-subunit abundance and tyrosine autophosphorylation nor insulin receptor substrate (IRS)-1-associated phosphatidylinositol (PI) 3-kinase activity differed in the two groups. However, IRS-1 protein abundance was significantly increased in PCOS, resulting in significantly decreased PI 3-kinase activity when normalized for IRS-1. Phosphorylation of IRS-1 on Ser(312), a key regulatory site, was significantly increased in PCOS, which may have contributed to this signaling defect. Insulin signaling via IRS-2 was also decreased in myotubes from women with PCOS. In summary, decreased insulin-stimulated glucose uptake in PCOS skeletal muscle in vivo is an acquired defect. Nevertheless, there are intrinsic abnormalities in glucose transport and insulin signaling in myotubes from affected women, including increased phosphorylation of IRS-1 Ser(312), that may confer increased susceptibility to insulin resistance-inducing factors in the in vivo environment. These abnormalities differ from those reported in other insulin resistant states consistent with the hypothesis that PCOS is a genetically unique disorder conferring an increased risk for type 2 diabetes.
引用
收藏
页码:E1047 / E1054
页数:8
相关论文
共 52 条
  • [1] Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver
    Abel, ED
    Peroni, O
    Kim, JK
    Kim, YB
    Boss, O
    Hadro, E
    Minnemann, T
    Shulman, GI
    Kahn, BB
    [J]. NATURE, 2001, 409 (6821) : 729 - 733
  • [2] The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307
    Aguirre, V
    Uchida, T
    Yenush, L
    Davis, R
    White, MF
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) : 9047 - 9054
  • [3] Insulin action in cultured human skeletal muscle cells during differentiation: assessment of cell surface GLUT4 and GLUT1 content
    Al-Khalili, L
    Chibalin, AV
    Kannisto, K
    Zhang, BB
    Permert, J
    Holman, GD
    Ehrenborg, E
    Ding, VDH
    Zierath, JR
    Krook, A
    [J]. CELLULAR AND MOLECULAR LIFE SCIENCES, 2003, 60 (05) : 991 - 998
  • [4] Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation
    Bjornholm, M
    Kawano, Y
    Lehtihet, M
    Zierath, JR
    [J]. DIABETES, 1997, 46 (03) : 524 - 527
  • [5] Selective insulin resistance in the polycystic ovary syndrome
    Book, CB
    Dunaif, A
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1999, 84 (09) : 3110 - 3116
  • [6] Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes
    Bouzakri, K
    Roques, M
    Gual, P
    Espinosa, S
    Guebre-Egziabher, F
    Riou, JP
    Laville, M
    Le Marchand-Brustel, Y
    Tanti, JF
    Vidal, H
    [J]. DIABETES, 2003, 52 (06) : 1319 - 1325
  • [7] IRS-2 pathways integrate female reproduction and energy homeostasis
    Burks, DJ
    de Mora, JF
    Schubert, M
    Withers, DJ
    Myers, MG
    Towery, HH
    Altamuro, SL
    Flint, CL
    White, MF
    [J]. NATURE, 2000, 407 (6802) : 377 - 382
  • [8] Glucose transport in cultured human skeletal muscle cells - Regulation by insulin and glucose in nondiabetic and non-insulin-dependent diabetes mellitus subjects
    Ciaraldi, TP
    Abrams, L
    Nikoulina, S
    Mudaliar, S
    Henry, RR
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (06) : 2820 - 2827
  • [9] CELLULAR MECHANISMS OF INSULIN RESISTANCE IN POLYCYSTIC OVARIAN SYNDROME
    CIARALDI, TP
    ELROEIY, A
    MADAR, Z
    REICHART, D
    OLEFSKY, JM
    YEN, SSC
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1992, 75 (02) : 577 - 583
  • [10] Insulin resistance differentially affects the PI3-kinase- and MAP kinase-mediated signaling in human muscle
    Cusi, K
    Maezono, K
    Osman, A
    Pendergrass, M
    Patti, ME
    Pratipanawatr, T
    DeFronzo, RA
    Kahn, CR
    Mandarino, LJ
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (03) : 311 - 320