Increased insulin receptor signaling and glycogen synthase activity contribute to the synergistic effect of exercise on insulin action

被引:40
作者
Christ-Roberts, CY
Pratipanawatr, T
Pratipanawatr, W
Berria, R
Belfort, R
Mandarino, LJ
机构
[1] Univ Texas, Hlth Sci Ctr, Dept Med, Div Diabet, San Antonio, TX 78229 USA
[2] Univ Texas, Hlth Sci Ctr, Dept Physiol, San Antonio, TX 78229 USA
[3] Univ Texas, Hlth Sci Ctr, Dept Biochem, San Antonio, TX 78229 USA
关键词
phosphatidylinositol; 3-kinase; Akt;
D O I
10.1152/japplphysiol.00605.2003
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The purpose of this study was to determine the factors contributing to the ability of exercise to enhance insulin-stimulated glucose disposal. Sixteen insulin-resistant nondiabetic and seven Type 2 diabetic subjects underwent two hyperinsulinemic (40 mU.m(-2).min(-1)) clamps, once without and once with concomitant exercise at 70% peak O-2 consumption. Exercise was begun at the start of insulin infusion and was performed for 30 min. Biopsies of the vastus lateralis were performed before and after 30 min of insulin infusion (immediately after cessation of exercise). Exercise synergistically increased insulin-stimulated glucose disposal in nondiabetic [from 4.6 +/- 0.4 to 9.5 +/- 0.8 mg.kg fat-free mass (FFM)(-1).min(-1)] and diabetic subjects (from 4.3 +/- 1.0 to 7.9 +/- 0.7 mg.kg FFM-1.min(-1)) subjects. The rate of glucose disposal also was significantly greater in each group after cessation of exercise. Exercise enhanced insulin-stimulated increases in glycogen synthase fractional velocity in control (from 0.07 +/- 0.02 to 0.22 +/- 0.05, P < 0.05) and diabetic (from 0.08 +/- 0.03 to 0.15 +/- 0.03, P < 0.01) subjects. Exercise also enhanced insulin-stimulated glucose storage (glycogen synthesis) in nondiabetic (2.9 +/- 0.9 vs. 4.9 +/- 1.1 mg.kg FFM-1.min(-1)) and diabetic (1.7 +/- 0.5 vs. 4.2 +/- 0.8 mg.kg FFM-1.min(-1)) subjects. Increased glucose storage accounted for the increase in whole body glucose disposal when exercise was performed during insulin stimulation in both groups; effects of exercise were correlated with enhancement of glucose disposal and glucose storage (r = 0.93, P < 0.001). Exercise synergistically enhanced insulin-stimulated insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity (P < 0.05) and Akt Ser(473) phosphorylation (P < 0.05) in nondiabetic subjects but had little effect in diabetic subjects. The data indicate that exercise, performed in conjunction with insulin infusion, synergistically increases insulin-stimulated glucose disposal compared with insulin alone. In nondiabetic and diabetic subjects, increased glycogen synthase activation is likely to be involved, in part, in this effect. In nondiabetic, but not diabetic, subjects, exercise-induced enhancement of insulin stimulation of the phosphatidylinositol 3-kinase pathway is also likely to be involved in the exercise-induced synergistic enhancement of glucose disposal.
引用
收藏
页码:2519 / 2529
页数:11
相关论文
共 35 条
[1]   The muscle-specific protein phosphatase PP1G/RGL(GM) is essential for activation of glycogen synthase by exercise [J].
Aschenbach, WG ;
Suzuki, Y ;
Breeden, K ;
Prats, C ;
Hirshman, MF ;
Dufresne, SD ;
Sakamoto, K ;
Vilardo, PG ;
Steele, M ;
Kim, JH ;
Jing, SL ;
Goodyear, LJ ;
DePaoli-Roach, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (43) :39959-39967
[2]  
BERGSTROM J, 1962, SCAND J CLIN LAB INV, V14, P1
[3]   Defective signaling through Akt-2 and-3 but not Akt-1 in insulin-resistant human skeletal muscle - Potential role in insulin resistance [J].
Brozinick, JT ;
Roberts, BR ;
Dohm, GL .
DIABETES, 2003, 52 (04) :935-941
[4]   Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle [J].
Brozinick, JT ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) :14679-14682
[5]   PHOSPHATIDYLINOSITOL 3-KINASE ACTIVATION IS REQUIRED FOR INSULIN STIMULATION OF PP70 S6 KINASE, DNA-SYNTHESIS, AND GLUCOSE-TRANSPORTER TRANSLOCATION [J].
CHEATHAM, B ;
VLAHOS, CJ ;
CHEATHAM, L ;
WANG, L ;
BLENIS, J ;
KAHN, CR .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (07) :4902-4911
[6]   Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ) [J].
Cho, H ;
Mu, J ;
Kim, JK ;
Thorvaldsen, JL ;
Chu, QW ;
Crenshaw, EB ;
Kaestner, KH ;
Bartolomei, MS ;
Shulman, GI ;
Birnbaum, MJ .
SCIENCE, 2001, 292 (5522) :1728-1731
[7]   Exercise training improves muscle insulin resistance but not insulin receptor signaling in obese Zucker rats [J].
Christ, CY ;
Hunt, D ;
Hancock, J ;
Garcia-Macedo, R ;
Mandarino, LJ ;
Ivy, JL .
JOURNAL OF APPLIED PHYSIOLOGY, 2002, 92 (02) :736-744
[8]   Insulin resistance differentially affects the PI3-kinase- and MAP kinase-mediated signaling in human muscle [J].
Cusi, K ;
Maezono, K ;
Osman, A ;
Pendergrass, M ;
Patti, ME ;
Pratipanawatr, T ;
DeFronzo, RA ;
Kahn, CR ;
Mandarino, LJ .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (03) :311-320
[9]   SYNERGISTIC INTERACTION BETWEEN EXERCISE AND INSULIN ON PERIPHERAL GLUCOSE-UPTAKE [J].
DEFRONZO, RA ;
FERRANNINI, E ;
SATO, Y ;
FELIG, P .
JOURNAL OF CLINICAL INVESTIGATION, 1981, 68 (06) :1468-1474
[10]   Glucose clearance in aged trained skeletal muscle during maximal insulin with superimposed exercise [J].
Dela, F ;
Mikines, KJ ;
Larsen, JJ ;
Galbo, H .
JOURNAL OF APPLIED PHYSIOLOGY, 1999, 87 (06) :2059-2067