Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis

被引:574
作者
Zhu, Ziqiang [1 ]
An, Fengying [1 ]
Feng, Ying [1 ]
Li, Pengpeng [1 ]
Xue, Li [2 ]
Mu, A. [1 ]
Jiang, Zhiqiang [1 ]
Kim, Jong-Myong [3 ]
To, Taiko Kim [3 ]
Li, Wei [2 ]
Zhang, Xinyan [1 ]
Yu, Qiang [1 ]
Dong, Zhi [1 ]
Chen, Wen-Qian [1 ]
Seki, Motoaki [3 ]
Zhou, Jian-Min [2 ]
Guo, Hongwei [1 ]
机构
[1] Peking Univ, Coll Life Sci, State Key Lab Prot & Plant Gene Res, Beijing 100871, Peoples R China
[2] Natl Inst Biol Sci, Beijing 102206, Peoples R China
[3] RIKEN Plant Sci Ctr, Yokohama, Kanagawa 2300045, Japan
基金
中国国家自然科学基金;
关键词
root hair; Botrytis cinerea; RESPONSE PATHWAY; HISTONE ACETYLATION; REGULATED DEFENSE; PROTEINS; ACTIVATION; RECEPTOR; TARGETS; COI1; ACID; HDA6;
D O I
10.1073/pnas.1103959108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Jasmonate (JA) and ethylene (ET) are two major plant hormones that synergistically regulate plant development and tolerance to necrotrophic fungi. Both JA and ET induce the expression of several pathogenesis-related genes, while blocking either signaling pathway abolishes the induction of these genes by JA and ET alone or in combination. However, the molecular basis of JA/ET coaction and signaling interdependency is largely unknown. Here, we report that two Arabidopsis ET-stabilized transcription factors (EIN3 and EIL1) integrate ET and JA signaling in the regulation of gene expression, root development, and necrotrophic pathogen defense. Further studies reveal that JA enhances the transcriptional activity of EIN3/EIL1 by removal of JA-Zim domain (JAZ) proteins, which physically interact with and repress EIN3/EIL1. In addition, we find that JAZ proteins recruit an RPD3-type histone deacetylase (HDA6) as a corepressor that modulates histone acetylation, represses EIN3/EIL1-dependent transcription, and inhibits JA signaling. Our studies identify EIN3/EIL1 as a key integration node whose activation requires both JA and ET signaling, and illustrate transcriptional derepression as a common mechanism to integrate diverse signaling pathways in the regulation of plant development and defense.
引用
收藏
页码:12539 / 12544
页数:6
相关论文
共 50 条
[1]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[2]   Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis [J].
Alonso, JM ;
Stepanova, AN ;
Solano, R ;
Wisman, E ;
Ferrari, S ;
Ausubel, FM ;
Ecker, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2992-2997
[3]   Ethylene-Induced Stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 Is Mediated by Proteasomal Degradation of EIN3 Binding F-Box 1 and 2 That Requires EIN2 in Arabidopsis [J].
An, Fengying ;
Zhao, Qiong ;
Ji, Yusi ;
Li, Wenyang ;
Jiang, Zhiqiang ;
Yu, Xiangchun ;
Zhang, Chen ;
Han, Ying ;
He, Wenrong ;
Liu, Yidong ;
Zhang, Shuqun ;
Ecker, Joseph R. ;
Guo, Hongwei .
PLANT CELL, 2010, 22 (07) :2384-2401
[4]   Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi [J].
Berrocal-Lobo, M ;
Molina, A ;
Solano, R .
PLANT JOURNAL, 2002, 29 (01) :23-32
[5]   The role of ethylene in host-pathoven interactions [J].
Broekaert, Willem F. ;
Delaure, Stijn L. ;
De Bolle, Miguel F. C. ;
Cammue, Bruno P. A. .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2006, 44 :393-416
[6]   Jasmonate Passes Muster: A Receptor and Targets for the Defense Hormone [J].
Browse, John .
ANNUAL REVIEW OF PLANT BIOLOGY, 2009, 60 :183-205
[7]   Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins [J].
Chao, QM ;
Rothenberg, M ;
Solano, R ;
Roman, G ;
Terzaghi, W ;
Ecker, JR .
CELL, 1997, 89 (07) :1133-1144
[8]   Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response [J].
Chen, Li-Ting ;
Luo, Ming ;
Wang, Yu-Yuan ;
Wu, Keqiang .
JOURNAL OF EXPERIMENTAL BOTANY, 2010, 61 (12) :3345-3353
[9]   Gibberellin Acts through Jasmonate to Control the Expression of MYB21, MYB24, and MYB57 to Promote Stamen Filament Growth in Arabidopsis [J].
Cheng, Hui ;
Song, Susheng ;
Xiao, Langtao ;
Soo, Hui Meng ;
Cheng, Zhiwei ;
Xie, Daoxin ;
Peng, Jinrong .
PLOS GENETICS, 2009, 5 (03)
[10]   The bHLH Transcription Factor MYC3 Interacts with the Jasmonate ZIM-Domain Proteins to Mediate Jasmonate Response in Arabidopsis [J].
Cheng, Zhiwei ;
Sun, Li ;
Qi, Tiancong ;
Zhang, Bosen ;
Peng, Wen ;
Liu, Yule ;
Xie, Daoxin .
MOLECULAR PLANT, 2011, 4 (02) :279-288