Emergence of structural patterns out of synchronization in networks with competitive interactions

被引:70
作者
Assenza, Salvatore [2 ]
Gutierrez, Ricardo [3 ]
Gomez-Gardenes, Jesus [1 ,4 ]
Latora, Vito [2 ,5 ,6 ]
Boccaletti, Stefano [7 ,8 ]
机构
[1] Univ Zaragoza, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
[2] Scuola Super Catania, Lab Sistemi Complessi, I-95123 Catania, Italy
[3] Univ Politecn Madrid, Ctr Tecnol Biomed, Madrid, Spain
[4] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, Zaragoza 50018, Spain
[5] Univ Catania, Dipartimento Fis Astron, I-95123 Catania, Italy
[6] Ist Nazl Fis Nucl, I-95123 Catania, Italy
[7] Embassy Italy Tel Aviv, IL-68125 Tel Aviv, Israel
[8] CNR Ist Sistemi Complessi, I-50019 Sesto Fiorentino, Fi, Italy
来源
SCIENTIFIC REPORTS | 2011年 / 1卷
关键词
KURAMOTO; MODEL;
D O I
10.1038/srep00099
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synchronization is a collective phenomenon occurring in systems of interacting units, and is ubiquitous in nature, society and technology. Recent studies have enlightened the important role played by the interaction topology on the emergence of synchronized states. However, most of these studies neglect that real world systems change their interaction patterns in time. Here, we analyze synchronization features in networks in which structural and dynamical features co-evolve. The feedback of the node dynamics on the interaction pattern is ruled by the competition of two mechanisms: homophily (reinforcing those interactions with other correlated units in the graph) and homeostasis (preserving the value of the input strength received by each unit). The competition between these two adaptive principles leads to the emergence of key structural properties observed in real world networks, such as modular and scale-free structures, together with a striking enhancement of local synchronization in systems with no global order.
引用
收藏
页数:8
相关论文
共 52 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
[Anonymous], 1984, Chemical Oscillations, Waves, and Turbulence
[3]   Co-evolution of Phases and Connection Strengths in a Network of Phase Oscillators [J].
Aoki, Takaaki ;
Aoyagi, Toshio .
PHYSICAL REVIEW LETTERS, 2009, 102 (03)
[4]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[5]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[6]   The dissemination of culture - A model with local convergence and global polarization [J].
Axelrod, R .
JOURNAL OF CONFLICT RESOLUTION, 1997, 41 (02) :203-226
[7]   Detecting complex network modularity by dynamical clustering [J].
Boccaletti, S. ;
Ivanchenko, M. ;
Latora, V. ;
Pluchino, A. ;
Rapisarda, A. .
PHYSICAL REVIEW E, 2007, 75 (04)
[8]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[9]  
Boccaletti S., 2008, SYNCHRONIZED DYNAMIC
[10]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198