Drosophila R2D2 mediates follicle formation in somatic tissues through interactions with Dicer-1

被引:16
作者
Kalidas, Savitha [1 ,2 ]
Sanders, Charcacia [1 ,2 ]
Ye, Xuecheng [4 ]
Strauss, Tamara [4 ]
Kuhn, Mary [3 ]
Liu, Qinghua [4 ]
Smith, Dean P. [1 ,2 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Pharmacol, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Dept Neurosci, Dallas, TX 75390 USA
[3] Univ Texas SW Med Ctr Dallas, Dept Biol Mol, Dallas, TX 75390 USA
[4] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
关键词
RNAi; oogenesis; somatic development; female fertility;
D O I
10.1016/j.mod.2008.01.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The miRNA pathway has been shown to regulate developmentally important genes. Dicer-1 is required to cleave endogenously encoded microRNA (miRNA) precursors into mature miRNAs that regulate endogenous gene expression. RNA interference (RNAi) is a gene silencing mechanism triggered by double-stranded RNA (dsRNA) that protects organisms from parasitic nucleic acids. In Drosophila, Dicer-2 cleaves dsRNA into 21 base-pair small interfering RNA (siRNA) that are loaded into RISC (RNA induced silencing complex) that in turn cleaves mRNAs homologous to the siRNAs. Dicer-2 co-purifies with R2D2, a low-molecular weight protein that loads siRNA onto Ago-2 in RISC. Loss of R2D2 results in defective RNAi. However, unlike mutants in other RNAi components like Dicer-2 or Ago-2, we report here that r2d2(1) mutants have striking developmental defects. r2d21 mutants have reduced female fertility, producing less than 1/10 the normal number of progeny. These escapers have normal morphology. We show R2D2 functions in the ovary, specifically in the somatic tissues giving rise to the stalk and other follicle cells critical for establishing the cellular architecture of the oocyte. Most interestingly, the female fertility defects are dramatically enhanced when one copy of the dcr-1 gene is missing and Dicer-1 protein co-immunoprecipitates with R2D2 antisera. These data show that r2d21 mutants have reduced viability and defective female fertility that stems from abnormal follicle cell function, and Dicer-1 impacts this process. We conclude that R2D2 functions beyond its role in RNA interference to include ovarian development in Drosophila. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:475 / 485
页数:11
相关论文
共 51 条
[1]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[2]   Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line [J].
Aravin, AA ;
Klenov, MS ;
Vagin, VV ;
Bantignies, F ;
Cavalli, G ;
Gvozdev, VA .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (15) :6742-6750
[3]   The Drosophila shell game:: patterning genes and morphological change [J].
Berg, CA .
TRENDS IN GENETICS, 2005, 21 (06) :346-355
[4]   RNase III enzymes and the initiation of gene silencing [J].
Carmell, MA ;
Hannon, GJ .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (03) :214-218
[5]   The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis [J].
Carmell, MA ;
Xuan, ZY ;
Zhang, MQ ;
Hannon, GJ .
GENES & DEVELOPMENT, 2002, 16 (21) :2733-2742
[6]   A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal [J].
Cox, DN ;
Chao, A ;
Baker, J ;
Chang, L ;
Qiao, D ;
Lin, HF .
GENES & DEVELOPMENT, 1998, 12 (23) :3715-3727
[7]  
Cox DN, 2000, DEVELOPMENT, V127, P503
[8]   FlyBase: genes and gene models [J].
Drysdale, RA ;
Crosby, MA .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D390-D395
[9]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[10]   Normal microRNA maturation and germ-line stem cell maintenance requires loquacious, a double-stranded RNA-binding domain protein [J].
Förstemann, K ;
Tomari, Y ;
Du, TT ;
Vagin, VV ;
Denli, AM ;
Bratu, DP ;
Klattenhoff, C ;
Theurkauf, WE ;
Zamore, PD .
PLOS BIOLOGY, 2005, 3 (07) :1187-1201