Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems

被引:199
作者
Berger, MJ
Leveque, RJ
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
adaptive mesh refinement; hyperbolic conservation laws; high resolution; Godunov; finite-volume methods; gas dynamics; acoustics; software;
D O I
10.1137/S0036142997315974
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adaptive mesh refinement algorithm developed for the Euler equations of gas dynamics has been extended to employ high-resolution wave-propagation algorithms in a more general framework. This allows its use on a variety of new problems, including hyperbolic equations not in conservation form, problems with source terms or capacity functions, and logically rectangular curvilinear grids. This framework requires a modified approach to maintaining consistency and conservation at grid interfaces, which is described in detail. The algorithm is implemented in the AMRCLAW package, which is freely available.
引用
收藏
页码:2298 / 2316
页数:19
相关论文
共 19 条
[1]   3-DIMENSIONAL ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC CONSERVATION-LAWS [J].
BELL, J ;
BERGER, M ;
SALTZMAN, J ;
WELCOME, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01) :127-138
[2]  
BERGER J, AMRCLAW SOFTWARE
[3]  
BERGER M, 1982, THESIS STANFORD U CO
[4]   AUTOMATIC ADAPTIVE GRID REFINEMENT FOR THE EULER EQUATIONS [J].
BERGER, MJ ;
JAMESON, A .
AIAA JOURNAL, 1985, 23 (04) :561-568
[5]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[6]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[7]  
DEZEEUW D, 1991, 911542 AIAA
[8]  
Godunov SK., 1959, MAT SBORNIK, V89, P271
[9]  
LANGSETH JO, 1995, IN PRESS C NUM METH
[10]  
LANGSETH JO, 1997, WAVE PROPAGATION MET