Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis

被引:156
作者
Aguirre, A.
Planell, J. A.
Engel, E.
机构
[1] Inst Bioengn Catalonia IBEC, Barcelona 08028, Spain
[2] Tech Univ Catalonia UPC, ETSEIB, Dept Mat Sci & Met Engn, Barcelona 08028, Spain
[3] CIBER BBN, Zaragoza 50118, Spain
关键词
Bone marrow; Endothelial progenitor cell; Co-culture; Mesenchymal stem cell; Angiogenesis; GROWTH-FACTOR; IN-VITRO; TISSUE; DIFFERENTIATION; ANGIOPOIETINS; COMMUNICATION; RECEPTOR; BLOOD; VEGF;
D O I
10.1016/j.bbrc.2010.08.073
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3 days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:284 / 291
页数:8
相关论文
共 36 条
[1]   Human mesenchymal stem cells modulate allogeneic immune cell responses [J].
Aggarwal, S ;
Pittenger, MF .
BLOOD, 2005, 105 (04) :1815-1822
[2]   Extracellular calcium modulates in vitro bone marrow-derived Flk-1+ CD34+ progenitor cell chemotaxis and differentiation through a calcium-sensing receptor [J].
Aguirre, A. ;
Gonzalez, A. ;
Planell, J. A. ;
Engel, E. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 393 (01) :156-161
[3]   Isolation of putative progenitor endothelial cells for angiogenesis [J].
Asahara, T ;
Murohara, T ;
Sullivan, A ;
Silver, M ;
vanderZee, R ;
Li, T ;
Witzenbichler, B ;
Schatteman, G ;
Isner, JM .
SCIENCE, 1997, 275 (5302) :964-967
[4]   Direct cell contact influences bone marrow mesenchymal stem cell fate [J].
Ball, SG ;
Shuttleworth, AC ;
Kielty, CM .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2004, 36 (04) :714-727
[5]   Osteoblastic cells regulate the haematopoietic stem cell niche [J].
Calvi, LM ;
Adams, GB ;
Weibrecht, KW ;
Weber, JM ;
Olson, DP ;
Knight, MC ;
Martin, RP ;
Schipani, E ;
Divieti, P ;
Bringhurst, FR ;
Milner, LA ;
Kronenberg, HM ;
Scadden, DT .
NATURE, 2003, 425 (6960) :841-846
[6]   Positive and Negative Modulation of Angiogenesis by VEGFR1 Ligands [J].
Cao, Yihai .
SCIENCE SIGNALING, 2009, 2 (59) :re1
[7]   The role of mesenchymal stem cells in haemopoiesis [J].
Dazzi, Francesco ;
Ramasamy, Rajesh ;
Glennie, Sarah ;
Jones, Simon P. ;
Roberts, Irene .
BLOOD REVIEWS, 2006, 20 (03) :161-171
[8]   The Control of Vascular Integrity by Endothelial Cell Junctions: Molecular Basis and Pathological Implications [J].
Dejana, Elisabetta ;
Tournier-Lasserve, Elisabeth ;
Weinstein, Brant M. .
DEVELOPMENTAL CELL, 2009, 16 (02) :209-221
[9]   Angiogenesis [J].
Folkman, J .
ANNUAL REVIEW OF MEDICINE, 2006, 57 :1-18
[10]   Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells [J].
Fuchs, Sabine ;
Hofmann, Alexander ;
Kirkpatrick, C. James .
TISSUE ENGINEERING, 2007, 13 (10) :2577-2588