Comparison of computational models of familiarity discrimination in the perirhinal cortex

被引:92
作者
Bogacz, R
Brown, MW [2 ]
机构
[1] Univ Bristol, Dept Comp Sci, Bristol BS8 1TD, Avon, England
[2] Univ Bristol, Dept Anat, MRC, Ctr Synapt Plast, Bristol BS8 1TD, Avon, England
关键词
recognition memory; neural network models; novelty detection; feature extraction; hippocampal region;
D O I
10.1002/hipo.10093
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This study compares the efficiency and plausibility of published computational models of familiarity discrimination in the perirhinal cortex. Substantial evidence indicates that the perirhinal cortex is involved in both the familiarity discrimination aspect of recognition memory and in perceptual functions involved with representations of complete stimuli (i.e., object identification). Published models of how the perirhinal cortex may perform familiarity discrimination can be divided into two groups. The first group assumes that a proportion of perirhinal neurons form a network specialised just for familiarity discrimination (these models may be based on Hebbian or anti-Hebbian synaptic plasticity). In contrast, the second group assumes that both familiarity discrimination and learning representations of complete stimuli are performed within a single combined network. This study establishes that when the responses of neurons that provide input to the familiarity discrimination network are correlated (as indicated by experimental data), specialised networks based on anti-Hebbian learning may recognise the previous occurrence of many more stimuli (i.e., have a capacity up to thousands of times larger) than specialised networks based on Hebbian learning. The currently published combined models do not learn an optimal stimulus representation (they do not fully extract statistically independent features), and hence their capacities are even lower than those of the specialised models based on Hebbian learning. Hence, the combined models published thus far are critically less efficient than the specialised models based on anti-Hebbian learning. This study also compares the consistency of the models with experimental observations concerning what is known of synaptic plasticity in the perirhinal cortex and the responses of its neurons. Many theoretically important parameters remain undetermined, and experiments are suggested to provide information critical for refining and distinguishing between the various models. However, the above theoretical arguments and currently published data favour the existence of a separate network specialised for familiarity discrimination.
引用
收藏
页码:494 / 524
页数:31
相关论文
共 81 条
[41]  
ITO M, 1989, ANNU REV NEUROSCI, V12, P85, DOI 10.1146/annurev.ne.12.030189.000505
[42]   Long-term depression: a cascade of induction and expression mechanisms [J].
Kemp, N ;
Bashir, ZI .
PROGRESS IN NEUROBIOLOGY, 2001, 65 (04) :339-365
[43]   Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated [J].
Kirov, SA ;
Harris, KM .
NATURE NEUROSCIENCE, 1999, 2 (10) :878-883
[44]  
Kirov SA, 1999, J NEUROSCI, V19, P2876
[45]   Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys [J].
Kobatake, E ;
Wang, G ;
Tanaka, K .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (01) :324-330
[46]  
Kohonen T., 1989, Self-Organization and Associative Memory, V3rd
[47]   THE REPRESENTATION OF STIMULUS-FAMILIARITY IN ANTERIOR INFERIOR TEMPORAL CORTEX [J].
LI, L ;
MILLER, EK ;
DESIMONE, R .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 69 (06) :1918-1929
[48]   SELF-ORGANIZATION OF ORIENTATION SENSITIVE CELLS IN STRIATE CORTEX [J].
MALSBURG, CV .
KYBERNETIK, 1973, 14 (02) :85-100
[49]   Novelty acquisition is associated with induction of hippocampal long-term depression [J].
Manahan-Vaughan, D ;
Braunewell, KH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) :8739-8744
[50]  
McCulloch W. S., 1943, B MATH BIOPHYS, V5, P115, DOI [DOI 10.1007/BF02478259, 10.1007/BF02478259]