Transport and Interfacial Transfer of Electrons in Dye-Sensitized Solar Cells Utilizing a Co(dbbip)2 Redox Shuttle

被引:98
作者
Wang, Hongxia [1 ]
Nicholson, Patrick G. [2 ]
Peter, Laurence [1 ]
Zakeeruddin, Shaik M. [3 ]
Graetzel, Michael [3 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[3] Swiss Fed Inst Technol, Lab Photon & Interfaces, CH-1055 Lausanne, Switzerland
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
BACK-REACTION; PERFORMANCE ENHANCEMENT; DIFFUSION LENGTH; COBALT COMPLEX; EFFICIENCY; RECOMBINATION; INJECTION; SUBSTRATE; MEDIATOR; COUPLE;
D O I
10.1021/jp105753k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The transport and interfacial transfer of electrons in dye-sensitized solar cells utilizing the Co(dbbip)(2) (dbbip = 2,6-bis(l'-butylbenzimidazol-2'-yl)pyridine) redox couple as an alternative to the conventional I-3(-)/l(-) couple have been investigated using intensity modulated photocurrent and photovoltage spectroscopy (IMPS/IMVS) combined with in situ near IR absorption spectroscopy. Attempts to use impedance spectroscopy to determine the electron diffusion length were unsuccessful due to overlap of the cathode and electron transport impedances. Values of the electron diffusion length in the range 5-8 pm were derived by IMPS/IMVS as well as by analysis of the ratio of the normalized photocurrent action spectra measured for illumination through the counter electrode and through the TiO2, electrode. These values indicate that loss of electrons by electron transfer to the Co(III) species will be important for TiO2 films thicker than about 5 pm, unless steps are taken to passivate the surface to retard back electron transfer.
引用
收藏
页码:14300 / 14306
页数:7
相关论文
共 30 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Re-evaluation of Recombination Losses in Dye-Sensitized Cells: The Failure of Dynamic Relaxation Methods to Correctly Predict Diffusion Length in Nanoporous Photoelectrodes [J].
Barnes, Piers R. F. ;
Liu, Lingxuan ;
Li, Xiaoe ;
Anderson, Assaf Y. ;
Kisserwan, Hawraa ;
Ghaddar, Tarek H. ;
Durrant, James R. ;
O'Regan, Brian C. .
NANO LETTERS, 2009, 9 (10) :3532-3538
[3]   Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements [J].
Barnes, Piers R. F. ;
Anderson, Assaf Y. ;
Koops, Sara E. ;
Durrant, James R. ;
O'Regan, Brian C. .
Journal of Physical Chemistry C, 2009, 113 (03) :1126-1136
[4]   Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements [J].
Bisquert, Juan ;
Fabregat-Santiago, Francisco ;
Mora-Sero, Ivan ;
Garcia-Belmonte, Germa ;
Gimenez, Sixto .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (40) :17278-17290
[5]   How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? [J].
Cameron, PJ ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (15) :7392-7398
[6]   How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells? [J].
Cameron, PJ ;
Peter, LM ;
Hore, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (02) :930-936
[7]   Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells [J].
Cameron, PJ ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (51) :14394-14400
[8]   Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells [J].
Cameron, PJ ;
Peter, LM ;
Zakeeruddin, SM ;
Grätzel, M .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1447-1453
[9]   Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells [J].
Chen, Chia-Yuan ;
Wang, Mingkui ;
Li, Jheng-Ying ;
Pootrakulchote, Nuttapol ;
Alibabaei, Leila ;
Ngoc-le, Cevey-ha ;
Decoppet, Jean-David ;
Tsai, Jia-Hung ;
Graetzel, Carole ;
Wu, Chun-Guey ;
Zakeeruddin, Shaik M. ;
Graetzel, Michael .
ACS NANO, 2009, 3 (10) :3103-3109
[10]   Dye-Sensitized Solar Cells: Driving-Force Effects on Electron Recombination Dynamics with Cobalt-Based Shuttles [J].
DeVries, Michael J. ;
Pellin, Michael J. ;
Hupp, Joseph T. .
LANGMUIR, 2010, 26 (11) :9082-9087