Three-dimensional modeling of a portable medical device for magnetic separation of particles from biological fluids

被引:12
作者
Chen, Haitao [1 ]
Bockenfeld, Danny
Rempfer, Dietmar
Kaminski, Michael D.
Rosengart, Axel J.
机构
[1] Univ Chicago, Med Ctr, Dept Neurol, Chicago, IL 60637 USA
[2] IIT, Dept Biomed Engn, Chicago, IL 60616 USA
[3] IIT, Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA
[4] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA
[5] Univ Chicago, Med Ctr, Dept Surg Neurosurg, Chicago, IL 60637 USA
关键词
D O I
10.1088/0031-9155/52/17/007
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A portable separator has been developed to quantitatively separate blood-borne magnetic spheres in potentially high-flow regimes for the human detoxification purpose. In the separator design, an array of biocompatible capillary tubing and magnetizable wires is immersed in an external magnetic field that is generated by two permanent magnets. The wires are magnetized and the high magnetic field gradient from the magnetized wires helps to collect blood-borne magnetic nano/micro-spheres from the blood flow. In this study, a 3D numerical model was created and the effect of tubing-wire configurations on the capture efficiency of the system was analyzed using COMSOL Multiphysics 3.3 (R). The results showed that the configuration characterized by bi-directionally alternating wires and tubes was the best design with respect to the four starting configurations. Preliminary in vitro experiments verified the numerical predictions. The results helped us to optimize a prototype portable magnetic separator that is suitable for rapid sequestration of magnetic nano/ microspheres from the human blood stream while accommodating necessary clinical boundary conditions.
引用
收藏
页码:5205 / 5218
页数:14
相关论文
共 28 条
[1]   In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles [J].
Alexiou, C ;
Jurgons, R ;
Schmid, R ;
Hilpert, A ;
Bergemann, C ;
Parak, F ;
Iro, H .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 293 (01) :389-393
[2]   MAGNETIC-PROPERTIES OF CARBON-COATED, FERROMAGNETIC NANOPARTICLES PRODUCED BY A CARBON-ARC METHOD [J].
BRUNSMAN, EM ;
SUTTON, R ;
BORTZ, E ;
KIRKPATRICK, S ;
MIDELFORT, K ;
WILLIAMS, J ;
SMITH, P ;
MCHENRY, ME ;
MAJETICH, SA ;
ARTMAN, JO ;
DEGRAEF, M ;
STALEY, SW .
JOURNAL OF APPLIED PHYSICS, 1994, 75 (10) :5882-5884
[3]  
CHEN H, IN PRESS MED ENG PHY
[4]   A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques [J].
Chen, Haitao ;
Kaminski, Michael D. ;
Liu, Xianqiao ;
Mertz, Carol J. ;
Xie, Yumei ;
Torno, Michael D. ;
Rosengart, Axel J. .
MEDICAL HYPOTHESES, 2007, 68 (05) :1071-1079
[5]   Magnetic separation of micro-spheres from viscous biological fluids [J].
Chen, Haitao ;
Kaminski, Michael D. ;
Caviness, Patricia L. ;
Liu, Xianqiao ;
Dhar, Promila ;
Torno, Michael ;
Rosengart, Axel J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (04) :1185-1196
[6]   Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent-2: Parametric study with multi-wire two-dimensional model [J].
Chen, HT ;
Ebner, AD ;
Kaminski, MD ;
Rosengart, AJ ;
Ritter, JA .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 293 (01) :616-632
[7]   THEORY AND EXPERIMENTAL-VERIFICATION OF A MODEL FOR HIGH GRADIENT MAGNETIC SEPARATION [J].
CLARKSON, CJ ;
KELLAND, DR .
IEEE TRANSACTIONS ON MAGNETICS, 1978, 14 (03) :97-103
[8]   Nanolevel magnetic separation model considering flow limitations [J].
Cotten, GB ;
Eldredge, HB .
SEPARATION SCIENCE AND TECHNOLOGY, 2002, 37 (16) :3755-3779
[9]  
GERBER R, 1994, NATO ASI E, V253
[10]   The α1-antitrypsin/elastase complex as an experimental model for hemodialysis in acute catabolic renal failure, extracorporeal blood circulation and cardiocirculatory bypass [J].
Grano, V ;
Diano, N ;
Portaccio, M ;
Bencivenga, U ;
De Maio, A ;
De Santo, N ;
Perna, A ;
Salamino, F ;
Mita, DG .
INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2002, 25 (04) :297-305