Phenome-Wide Association Studies as a Tool to Advance Precision Medicine

被引:149
作者
Denny, Joshua C. [1 ,2 ]
Bastarache, Lisa [1 ]
Roden, Dan M. [1 ,2 ,3 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Biomed Informat, Nashville, TN 37203 USA
[2] Vanderbilt Univ, Dept Med, Sch Med, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Dept Pharmacol, Sch Med, Nashville, TN 37232 USA
来源
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 17 | 2016年 / 17卷
关键词
phenome-wide association study; genome-wide association study; electronic health record; phenotyping; GENETIC-VARIATION; EMERGE NETWORK; HEALTH; RECORDS; GENOME; PHEWAS; RISK; VARIANTS; FTO; IDENTIFICATION;
D O I
10.1146/annurev-genom-090314-024956
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Beginning in the early 2000s, the accumulation of biospecimens linked to electronic health records (EHRs) made possible genome-phenome studies (i.e., comparative analyses of genetic variants and phenotypes) using only data collected as a by-product of typical health care. In addition to disease and trait genetics, EHRs proved a valuable resource for analyzing pharmacogenetic traits and developing reverse genetics approaches such as phenome-wide association studies (PheWASs). PheWASs are designed to survey which of many phenotypes may be associated with a given genetic variant. PheWAS methods have been validated through replication of hundreds of known genotype-phenotype associations, and their use has differentiated between true pleiotropy and clinical comorbidity, added context to genetic discoveries, and helped define disease subtypes, and may also help repurpose medications. PheWAS methods have also proven to be useful with research-collected data. Future efforts that integrate broad, robust collection of phenotype data (e.g., EHR data) with purpose-collected research data in combination with a greater understanding of EHR data will create a rich resource for increasingly more efficient and detailed genome-phenome analysis to usher in new discoveries in precision medicine.
引用
收藏
页码:353 / 373
页数:21
相关论文
共 83 条
[1]  
[Anonymous], 2015, The Precision Medicine Initiative Cohort Program - Building a Research Foundation for 21st Century Medicine: Precision Medicine Initiative (PMI) Working Group Report to the Advisory Committee to the Director
[2]   Discovering medical conditions associated with periodontitis using linked electronic health records [J].
Boland, Mary Regina ;
Hripcsak, George ;
Albers, David J. ;
Wei, Ying ;
Wilcox, Adam B. ;
Wei, Jin ;
Li, Jianhua ;
Lin, Steven ;
Breene, Michael ;
Myers, Ronnie ;
Zimmerman, John ;
Papapanou, Panos N. ;
Weng, Chunhua .
JOURNAL OF CLINICAL PERIODONTOLOGY, 2013, 40 (05) :474-482
[3]   Biobanks and Electronic Medical Records: Enabling Cost-Effective Research [J].
Bowton, Erica ;
Field, Julie R. ;
Wang, Sunny ;
Schildcrout, Jonathan S. ;
Van Driest, Sara L. ;
Delaney, Jessica T. ;
Cowan, James ;
Weeke, Peter ;
Mosley, Jonathan D. ;
Wells, Quinn S. ;
Karnes, Jason H. ;
Shaffer, Christian ;
Peterson, Josh F. ;
Denny, Joshua C. ;
Roden, Dan M. ;
Pulley, Jill M. .
SCIENCE TRANSLATIONAL MEDICINE, 2014, 6 (234)
[4]   Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes [J].
Cannon, Christopher P. ;
Blazing, Michael A. ;
Giugliano, Robert P. ;
McCagg, Amy ;
White, Jennifer A. ;
Theroux, Pierre ;
Darius, Harald ;
Lewis, Basil S. ;
Ophuis, Ton Oude ;
Jukema, J. Wouter ;
De Ferrari, Gaetano M. ;
Ruzyllo, Witold ;
De Lucca, Paul ;
Im, KyungAh ;
Bohula, Erin A. ;
Reist, Craig ;
Wiviott, Stephen D. ;
Tershakovec, Andrew M. ;
Musliner, Thomas A. ;
Braunwald, Eugene ;
Califf, Robert M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (25) :2387-2397
[5]   R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment [J].
Carroll, Robert J. ;
Bastarache, Lisa ;
Denny, Joshua C. .
BIOINFORMATICS, 2014, 30 (16) :2375-2376
[6]   A simple algorithm for identifying negated findings and diseases in discharge summaries [J].
Chapman, WW ;
Bridewell, W ;
Hanbury, P ;
Cooper, GF ;
Buchanan, BG .
JOURNAL OF BIOMEDICAL INFORMATICS, 2001, 34 (05) :301-310
[7]   China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up [J].
Chen, Zhengming ;
Chen, Junshi ;
Collins, Rory ;
Guo, Yu ;
Peto, Richard ;
Wu, Fan ;
Li, Liming .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (06) :1652-1666
[8]   FTO Obesity Variant Circuitry and Adipocyte Browning in Humans [J].
Claussnitzer, Melina ;
Dankel, Simon N. ;
Kim, Kyoung-Han ;
Quon, Gerald ;
Meuleman, Wouter ;
Haugen, Christine ;
Glunk, Viktoria ;
Sousa, Isabel S. ;
Beaudry, Jacqueline L. ;
Puviindran, Vijitha ;
Abdennur, Nezar A. ;
Liu, Jannel ;
Svensson, Per-Arne ;
Hsu, Yi-Hsiang ;
Drucker, Daniel J. ;
Mellgren, Gunnar ;
Hui, Chi-Chung ;
Hauner, Hans ;
Kellis, Manolis .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (10) :895-907
[9]   Sequence variations in PCSK9, low LDL, and protection against coronary heart disease [J].
Cohen, JC ;
Boerwinkle, E ;
Mosley, TH ;
Hobbs, HH .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (12) :1264-1272
[10]   Casemix adjustment of managed care claims data using the Clinical Classification for Health Policy Research method [J].
Cowen, ME ;
Dusseau, DJ ;
Toth, BG ;
Guisinger, C ;
Zodet, MW ;
Shyr, Y .
MEDICAL CARE, 1998, 36 (07) :1108-1113