A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells

被引:319
作者
Marc, J
Granger, CL
Brincat, J
Fisher, DD
Kao, TH
McCubbin, AG
Cyr, RJ
机构
[1] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
[3] Univ Sydney, Sydney, NSW 2006, Australia
关键词
D O I
10.1105/tpc.10.11.1927
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microtubules influence morphogenesis by forming distinct geometrical arrays in the cell cortex, which in turn affect the deposition of cellulose microfibrils. Although many chemical and physical factors affect microtubule orientation, it is unclear how cortical microtubules in elongating cells maintain their ordered transverse arrays and how they reorganize into new geometries. To visualize these reorientations in living cells, we constructed a microtubule reporter gene by fusing the microtubule binding domain of the mammalian microtubule-associated protein 4 (MAP4) gene with the green fluorescent protein (GFP) gene, and transient expression of the recombinant protein in epidermal cells of fava bean was induced. The reporter protein decorates microtubules in vivo and binds to microtubules in vitro. Confocal microscopy and time-course analysis of labeled cortical arrays along the outer epidermal wall revealed the lengthening, shortening, and movement of microtubules; localized microtubule reorientations; and global microtubule reorganizations. The global microtubule orientation in some cells fluctuates about the transverse axis and may be a result of a cyclic self-correcting mechanism to maintain a net transverse orientation during cellular elongation.
引用
收藏
页码:1927 / 1939
页数:13
相关论文
共 84 条