Nonlinear tight-binding approximation for Bose-Einstein condensates in a lattice

被引:127
作者
Smerzi, A [1 ]
Trombettoni, A
机构
[1] Univ Trent, Ist Nazl Fis Mat, BEC, CRS, I-38050 Povo, Italy
[2] Univ Trent, Dipartimento Fis, I-38050 Povo, Italy
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Univ Parma, Ist Nazl Fis Mat, I-43100 Parma, Italy
[5] Univ Parma, Dipartimento Fis, I-43100 Parma, Italy
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 02期
关键词
D O I
10.1103/PhysRevA.68.023613
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamics of Bose-Einstein condensates trapped in a deep optical lattice is governed by a discrete nonlinear equation (DNL). Its degree of nonlinearity and the intersite hopping rates are retrieved from a nonlinear tight-binding approximation taking into account the effective dimensionality of each condensate. We derive analytically the Bloch and the Bogoliubov excitation spectra and the velocity of sound waves emitted by a traveling condensate. Within a Lagrangian formalism, we obtain Newtonian-like equations of motion of localized wave packets. We calculate the ground-state atomic distribution in the presence of a harmonic confining potential, the frequencies of small amplitude dipole, and quadrupole oscillations. We finally quantize the DNL, recovering an extended Bose-Hubbard model.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[2]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[3]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[4]  
[Anonymous], COMMUNICATION
[5]   Ground-state properties of magnetically trapped Bose-condensed rubidium gas [J].
Baym, G ;
Pethick, CJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :6-9
[6]   Bose-Einstein condensates in spatially periodic potentials [J].
Berg-Sorensen, K ;
Molmer, K .
PHYSICAL REVIEW A, 1998, 58 (02) :1480-1484
[7]   Josephson junction arrays with Bose-Einstein condensates [J].
Cataliotti, FS ;
Burger, S ;
Fort, C ;
Maddaloni, P ;
Minardi, F ;
Trombettoni, A ;
Smerzi, A ;
Inguscio, M .
SCIENCE, 2001, 293 (5531) :843-846
[8]  
CATALIOTTI FS, CONDMAT0207139
[9]   Output from Bose condensates in tunnel arrays: the role of mean-field interactions and of transverse confinement [J].
Chiofalo, ML ;
Tosi, MP .
PHYSICS LETTERS A, 2000, 268 (4-6) :406-412
[10]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512