Transcription factor NF-κB differentially regulates death receptor 5 expression involving histone deacetylase 1

被引:122
作者
Shetty, S [1 ]
Graham, BA [1 ]
Brown, JG [1 ]
Hu, XJ [1 ]
Vegh-Yarema, N [1 ]
Harding, G [1 ]
Paul, JT [1 ]
Gibson, SB [1 ]
机构
[1] Univ Manitoba, Manitoba Inst Cell Biol, Winnipeg, MB R3E 0V9, Canada
关键词
D O I
10.1128/MCB.25.13.5404-5416.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transcription factor nuclear factor kappa B (NF-kappa B) regulates the expression of both antiapoptotic and proapoptotic genes. Death receptor 5 (DR5, TRAIL-R2) is a proapoptotic protein considered to be a potential target for cancer therapy, and its expression is mediated by NF-kappa B. The mechanism of NF-kappa B-induced DR5 expression is, however, unknown. Herein, we determined that etoposide-induced DR5 expression requires the first intronic region of the DR5 gene. Mutation of a putative NF-kappa B binding site in this intron eliminates DR5 promoter activity, as do mutations in the p53 binding site in this region. Reduction in p53 expression also blocks p65 binding to the intronic region of the DR5 gene, indicating cooperation between p53 and p65 in DR5 expression. In contrast, the antiapoptotic stimulus, epidermal growth factor (EGF), fails to increase DR5 expression but effectively activates NF-kappa B and induces p65 binding to the DR5 gene. EGF, however, induces the association of histone deacetylase 1 (HDAC1) with the DR5 gene, whereas etoposide treatment fails to induce this association. Indeed, HDAC inhibitors activate NF-kappa B and p53 and upregulate DR5 expression. Blockage of DR5 activation decreased HDAC inhibitor-induced apoptosis, and a combination of HDAC inhibitors and TRAIL increased apoptosis. This provides a mechanism for regulating NF-kappa B-mediated DRS expression and could explain the differential roles NF-kappa B plays in regulating apoptosis.
引用
收藏
页码:5404 / 5416
页数:13
相关论文
共 62 条
[1]   Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein [J].
Aron, JL ;
Parthun, MR ;
Marcucci, G ;
Kitada, S ;
Mone, AP ;
Davis, ME ;
Shen, TS ;
Murphy, T ;
Wickham, J ;
Kanakry, C ;
Lucas, DM ;
Reed, JC ;
Grever, MR ;
Byrd, JC .
BLOOD, 2003, 102 (02) :652-658
[2]   The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression [J].
Ashburner, BP ;
Westerheide, SD ;
Baldwin, AS .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (20) :7065-7077
[3]   Death receptors: Signaling and modulation [J].
Ashkenazi, A ;
Dixit, VM .
SCIENCE, 1998, 281 (5381) :1305-1308
[4]   The NF-kappa B and I kappa B proteins: New discoveries and insights [J].
Baldwin, AS .
ANNUAL REVIEW OF IMMUNOLOGY, 1996, 14 :649-683
[5]   Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB [J].
Baldwin, AS .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 107 (03) :241-246
[6]   TRAIL receptor-2 signals apoptosis through FADD and caspase-8 [J].
Bodmer, JL ;
Holler, N ;
Reynard, S ;
Vinciguerra, P ;
Schneider, P ;
Juo, P ;
Blenis, J ;
Tschopp, J .
NATURE CELL BIOLOGY, 2000, 2 (04) :241-243
[7]   Active repression of antiapoptotic gene expression by ReIA(p65) NF-κB [J].
Campbell, KJ ;
Rocha, S ;
Perkins, ND .
MOLECULAR CELL, 2004, 13 (06) :853-865
[8]  
Chen XF, 2003, CANCER RES, V63, P1059
[9]   NF-κB and rel proteins:: Evolutionarily conserved mediators of immune responses [J].
Ghosh, S ;
May, MJ ;
Kopp, EB .
ANNUAL REVIEW OF IMMUNOLOGY, 1998, 16 :225-260
[10]   Missing pieces in the NF-κB puzzle [J].
Ghosh, S ;
Karin, M .
CELL, 2002, 109 :S81-S96