Single trial variability of EEG and fMRI responses to visual stimuli

被引:34
作者
Bagshaw, Andrew P. [1 ]
Warbrick, Tracy
机构
[1] Univ Birmingham, Sch Psychol, Birmingham B15 2TT, W Midlands, England
[2] Univ Birmingham, BUIC, Birmingham B15 2TT, W Midlands, England
关键词
D O I
10.1016/j.neuroimage.2007.07.042
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent EEG-fMRI studies have suggested a novel method of data fusion which uses single trial (ST) estimates of event-related potentials in the fMRI analysis. This is potentially very powerful, but rests on the assumption that the ST variability observed in EEG is reflected in the fMRI signal. The current study investigated this assumption and compared two different data processing strategies for each modality. Five subjects underwent separate EEG and fMRI sessions with checkerboard stimuli at two contrasts. EEG data were preprocessed using wavelet denoising and independent component analysis (ICA), whilst the general linear model and ICA were used for fMRI. Amplitudes and latencies of the P1 and N2 components of the visual evoked potential (VEP) were calculated for each trial. For fMRI, the amplitudes and latencies of the ST haemodynamic responses (HR) were calculated. Within modality, the results for the two processing methods were significantly correlated in the majority of data sets. Across modality, the average amplitudes of the VEPs and HRs were also significantly correlated. Examination of ST variability demon strated that the amplitudes of the mean VEPs and HRs are both influenced by the latency variability of the ST responses to a greater extent than the amplitude variability. For high contrast stimuli the latency variability in EEG and fMRI was significantly correlated, with a similar trend seen for the low contrast stimuli. The results confirm the validity of examining both the EEG and fMRI signals on an ST basis and suggest an underlying neuronal origin in both modalities. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:280 / 292
页数:13
相关论文
共 44 条
[1]   Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex [J].
Arthurs, OJ ;
Williams, EJ ;
Carpenter, TA ;
Pickard, JD ;
Boniface, SJ .
NEUROSCIENCE, 2000, 101 (04) :803-806
[2]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[3]   Mental chronometry of working memory retrieval: A combined functional magnetic resonance imaging and event-related potentials approach [J].
Bledowski, C ;
Kadosh, KC ;
Wibral, M ;
Rahm, B ;
Bittner, RA ;
Hoechstetter, K ;
Scherg, M ;
Maurer, K ;
Goebel, R ;
Linden, DEJ .
JOURNAL OF NEUROSCIENCE, 2006, 26 (03) :821-829
[4]   Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings [J].
Bonmassar, G ;
Schwartz, DP ;
Liu, AK ;
Kwong, KK ;
Dale, AM ;
Belliveau, JW .
NEUROIMAGE, 2001, 13 (06) :1035-1043
[5]   Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring [J].
Debener, S ;
Ullsperger, M ;
Siegel, M ;
Fiehler, K ;
von Cramon, DY ;
Engel, AK .
JOURNAL OF NEUROSCIENCE, 2005, 25 (50) :11730-11737
[6]   Single-trial EEG-fMRI reveals the dynamics of cognitive function [J].
Debener, Stefan ;
Ullsperger, Markus ;
Siegel, Markus ;
Engel, Andreas K. .
TRENDS IN COGNITIVE SCIENCES, 2006, 10 (12) :558-563
[7]   EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J].
Delorme, A ;
Makeig, S .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 134 (01) :9-21
[8]   Cortical sources of the early components of the visual evoked potential [J].
Di Russo, F ;
Martínez, A ;
Sereno, MI ;
Pitzalis, S ;
Hillyard, SA .
HUMAN BRAIN MAPPING, 2002, 15 (02) :95-111
[9]   Single-trial variability in event-related BOLD signals [J].
Duann, JR ;
Jung, TP ;
Kuo, WJ ;
Yeh, TC ;
Makeig, S ;
Hsieh, JC ;
Sejnowski, TJ .
NEUROIMAGE, 2002, 15 (04) :823-835
[10]   Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI [J].
Eichele, T ;
Specht, K ;
Moosmann, M ;
Jongsma, MLA ;
Quiroga, RQ ;
Nordby, H ;
Hugdahl, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (49) :17798-17803