Core-shell Ni0.5TiOPO4/C composites as anode materials in Li ion batteries

被引:19
作者
Zhang, X. J. [1 ]
Zhang, Y. [1 ]
Zhou, Z. [1 ]
Wei, J. P. [1 ]
Essehli, R. [2 ,3 ]
El Bali, B. [3 ]
机构
[1] Nankai Univ, Minist Educ, Inst New Energy Mat Chem, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
[2] Univ Nantes, Ecole Mines Nantes, CNRS, SUBATECH,IN2P3,Unite Mixte Rech 6457, F-44307 Nantes 3, France
[3] Univ Mohamed I, Fac Sci, Dept Chem, LMSAC, Oujda 60000, Morocco
关键词
Ni0.5TiOPO4/C; Lithium-ion batteries; Core-shell; Anode materials; ELECTROCHEMICAL PERFORMANCES; CATHODE MATERIALS; CRYSTAL-STRUCTURE; LITHIUM; NANOCOMPOSITE; FE; INTERCALATION; TEMPERATURE; PHOSPHATES; ELECTRODE;
D O I
10.1016/j.electacta.2010.12.033
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Pristine Ni0.5TiOPO4 was prepared via a traditional solid-state reaction, and then Ni0.5TiOPO4/C composites with core-shell nanostructures were synthesized by hydrothermally treating Ni0.5TiOPO4 in glucose solution. X-ray diffraction patterns indicate that Ni0.5TiOPO4/C crystallizes in monoclinic P2(1)/c space group. Scanning electron microscopy and transmission electron microscopy show that the small particles with different sizes are coated with uniform carbon film of similar to 3 nm in thickness. Raman spectroscopy also confirms the presence of carbon in the composites. Ni0.5TiOPO4/C composites presented a capacity of 276 mAh g(-1) after 30 cycles at the current density of 42.7 mA g(-1), much higher than that of pristine Ni0.5TiOPO4 (155 mAh g(-1)). The improved electrochemical performances can be attributed to the existence of carbon shell. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2290 / 2294
页数:5
相关论文
共 34 条
[1]   Structural and lithium intercalation studies of Mn(0.5-x)CaxTi2(PO4)3 phases (0≤x≤0.50) [J].
Aatiq, A ;
Ménétrier, M ;
El Jazouli, A ;
Delmas, C .
SOLID STATE IONICS, 2002, 150 (3-4) :391-405
[2]   High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells [J].
Amine, K ;
Liu, J ;
Belharouak, I .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) :669-673
[3]   New active titanium oxyphosphate material for lithium batteries [J].
Belharouak, I ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) :648-651
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Crystal structure and spectroscopic properties of a new oxyarsenate Li0.5Ni0.25TiOAsO4 [J].
Chakir, M. ;
El Jazouli, A. ;
Chaminade, J. P. ;
Bouree, F. ;
de Waal, D. .
MATERIALS RESEARCH BULLETIN, 2007, 42 (07) :1348-1356
[6]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[7]   A Germanium-Carbon Nanocomposite Material for Lithium Batteries [J].
Cui, Guanglei ;
Gu, Lin ;
Zhi, Linjie ;
Kaskhedikar, N. ;
van Aken, Peter A. ;
Muellen, Klaus ;
Maier, Joachim .
ADVANCED MATERIALS, 2008, 20 (16) :3079-3083
[8]   Co0.5TiOPO4: Crystal structure, magnetic and electrochemical properties [J].
Essehli, Rachid ;
El Bali, Brahim ;
Ehrenberg, Helmut ;
Svoboda, Ingrid ;
Bramnik, Natalia ;
Fuess, Hartmut .
MATERIALS RESEARCH BULLETIN, 2009, 44 (04) :817-821
[9]   Effects of Fe doping on the electrochemical performance of LiCoPO4/C composites for high power-density cathode materials [J].
Han, Dong-Wook ;
Kang, Yong-Mook ;
Yin, Ri-Zhu ;
Song, Min-Sang ;
Kwon, Hyuk-Sang .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (01) :137-140
[10]   Synthesis of Triaxial LiFePO4 Nanowire with a VGCF Core Column and a Carbon Shell through the Electrospinning Method [J].
Hosono, Eiji ;
Wang, Yonggang ;
Kida, Noriyuki ;
Enomoto, Masaya ;
Kojima, Norimichi ;
Okubo, Masashi ;
Matsuda, Hirofumi ;
Saito, Yoshiyasu ;
Kudo, Tetsuichi ;
Honma, Itaru ;
Zhou, Haoshen .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (01) :212-218