High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells

被引:421
作者
Amine, K [1 ]
Liu, J [1 ]
Belharouak, I [1 ]
机构
[1] Argonne Natl Lab, Div Chem Engn, Electrochem Technol Program, Argonne, IL 60439 USA
关键词
Li-ion battery; olivine; LiFePO4; lithium bis-oxalatoborate; high-temperature;
D O I
10.1016/j.elecom.2005.04.018
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The high-temperature storage and cycling characteristics of prismatic Li-ion cells with carbon-coated LiFePO4 cathodes, MCMB graphite anodes and a LiPF6/EC-DEC electrolyte were investigated. The cells showed a significant capacity fade when cycled at 37 and 55 degrees C. Li-Sn reference electrode studies indicated that the interfacial impedance of the graphite electrode increased significantly during high-temperature cycling. Carbon-coated LiFePO4 electrodes were found to release iron ions into the electrolyte when aged at these temperatures; EDAX analyses confirmed the presence of iron at the surface of the graphite electrodes. The observed impedance rise of the graphite electrodes and the consequent capacity fade of the cells were attributed to the formation of interfacial films that were produced on the graphite electrodes as a result of possible catalytic effects of the metallic iron particles. The cycling stability of the cells was improved significantly when the LiPF6 electrolyte salt was replaced with the lithium bis-oxalatoborate LiB(C2O4)(2) salt. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:669 / 673
页数:5
相关论文
共 14 条
[1]   Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications [J].
Amine, K ;
Liu, J ;
Kang, S ;
Belharouak, I ;
Hyung, Y ;
Vissers, D ;
Henriksen, G .
JOURNAL OF POWER SOURCES, 2004, 129 (01) :14-19
[2]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[3]  
BELHAROUAK I, Patent No. 20040157126
[4]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[5]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[6]   Optimized lithium iron phosphate for high-rate electrochemical applications [J].
Franger, S ;
Bourbon, C ;
Le Cras, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1024-A1027
[7]   Nano-network electronic conduction in iron and nickel olivine phosphates [J].
Herle, PS ;
Ellis, B ;
Coombs, N ;
Nazar, LF .
NATURE MATERIALS, 2004, 3 (03) :147-152
[8]   Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J].
Huang, H ;
Yin, SC ;
Nazar, LF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A170-A172
[9]   Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J].
Padhi, AK ;
Nanjundaswamy, KS ;
Goodenough, JB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1188-1194
[10]   Electroactivity of natural and synthetic triphylite [J].
Ravet, N ;
Chouinard, Y ;
Magnan, JF ;
Besner, S ;
Gauthier, M ;
Armand, M .
JOURNAL OF POWER SOURCES, 2001, 97-8 :503-507