Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light

被引:191
作者
Bacsa, R
Kiwi, J
Ohno, T
Albers, P
Nadtochenko, V [1 ]
机构
[1] Swiss Fed Inst Technol, Lab Photon & Interfaces, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland
[2] Kyushu Inst Technol, Dept Mat Sci, Fac Engn, Kitakyushu, Fukuoka 8048550, Japan
[3] AQura GmbH, Electron Microscopy, D-63457 Hanau, Germany
关键词
D O I
10.1021/jp044979c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Doped TiO2 samples using different preparative procedures were synthesized using either urea or thiourea leading to N- or S-doped TiO2. Photocatalytic peroxidation and oxidation (mineralization) of phosphatidylethanolamine (PE) lipid with doped TiO2 were carried out under light irradiation lambda > 410 nm. The formation of conjugated double bonds in PE molecules was followed to detect the formation of peroxy radicals (peroxidation index) under light excitation (lambda > 410 nm) when doped TiO2 was used. The kinetics of CO2 production was monitored during the mineralization of PE. Colored TiO2 powders were studied in detail by different and complementary physicochemical techniques. The band gap energies of colored TiO2 were determined by diffuse reflectance spectroscopy (DRS). The visible absorption shoulder of TiO2 was observed to follow Urbach's law. The variation of the transient decay after 354 nm laser pulse excitation does not correlate with the different N- and S-TiO2 doping levels introduced by the addition of urea or thiourea. This suggests that the states (recombination centers or traps) introduced by the doping are not effective in varying the decay kinetics within the nanosecond and microsecond time scale. Elemental analysis shows comparable amounts of S- and N-doping of TiO2 when thiourea is used as dopant. X-ray diffraction reveals no rutile in S-TiO2 samples heated to 600 degrees C, suggesting that the addition of sulfur precludes rutilization during sample crystallization. X-ray photoelectron spectroscopy (XPS) of the S-TiO2 samples confirms the preferential localization of S on the 20 topmost layers of S-TiO2 upon calcination at 500 degrees C for 2 h.
引用
收藏
页码:5994 / 6003
页数:10
相关论文
共 35 条
  • [31] TiO2(Fe3+) nanostructured thin films with antibacterial properties
    Trapalis, CC
    Keivanidis, P
    Kordas, G
    Zaharescu, M
    Crisan, M
    Szatvanyi, A
    Gartner, M
    [J]. THIN SOLID FILMS, 2003, 433 (1-2) : 186 - 190
  • [32] Visible light-induced degradation of methylene blue on S-doped TiO2
    Umebayashi, T
    Yamaki, T
    Tanaka, S
    Asai, K
    [J]. CHEMISTRY LETTERS, 2003, 32 (04) : 330 - 331
  • [33] Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies
    Umebayashi, T
    Yamaki, T
    Yamamoto, S
    Miyashita, A
    Tanaka, S
    Sumita, T
    Asai, K
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (09) : 5156 - 5160
  • [34] Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces
    Wolfrum, EJ
    Huang, J
    Blake, DM
    Maness, PC
    Huang, Z
    Fiest, J
    Jacoby, WA
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (15) : 3412 - 3419
  • [35] Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water
    Zhu, JF
    Zheng, W
    Bin, HE
    Zhang, JL
    Anpo, M
    [J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2004, 216 (01) : 35 - 43