Tissue-engineered osteochondral constructs in the shape of an articular condyle

被引:137
作者
Alhadlaq, A
Mao, JJ
机构
[1] Univ Illinois, Dept Anat & Cell Biol, Tissue Engn Lab, Chicago, IL 60680 USA
[2] Univ Illinois, Dept Bioengn, Chicago, IL 60680 USA
[3] Univ Illinois, Dept Orthodont, Chicago, IL 60680 USA
关键词
D O I
10.2106/JBJS.D.02104
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background: An entire articular condyle engineered from stem cells may provide an alternative therapeutic approach to total joint replacement. This study describes our continuing effort to optimize the chondrogenic and osteogenic differentiation from mesenchymal stem cells toward engineering articular condyles in vivo. Methods: Primary rat bone-marrow mesenchymal stem cells were induced to differentiate into chondrogenic and osteogenic lineages in vitro and were suspended in polyethylene glycol-based hydrogel. The hydrogel cell suspensions, each at a density of 20 x 10(6) cells/mL, were stratified into two separate layers that were molded into the shape and dimensions of an adult human cadaveric mandibular condyle by sequential photopolymerization. The osteochondral constructs fabricated in vitro were implanted in the dorsum of immunodeficient mice for twelve weeks. Results: De novo formation of articular condyles in the shape and dimensions of the adult human mandibular condyle occurred after a twelve-week period of in vivo implantation. Histological evaluation demonstrated two stratified layers of cartilaginous and osseous tissues, and yet there was mutual infiltration of cartilage-like and bone-like tissues into each other's territories. The cartilaginous portion was stained intensively to safranin 0 and expressed immunolocalized type-II collagen. Chondrocytes adjacent to the tissue-engineered osteochondral junction were enlarged and expressed type-X collagen, typical of hypertrophic chondrocytes. The osseous portion contained bone trabeculae-like structures and expressed immunolocalized typed collagen, osteopontin, and osteonectin. Conclusions: A cell encapsulation density of 20 million cells/mL with in vivo incubation for twelve weeks yields further tissue maturation and phenotypic growth of both cartilage-like and bone-like tissues in the tissue-engineered articular condyle. Clinical Relevance: Tissue engineering of an entire condyle with chondral and osseous components derived from a single population of adult stem cells, as described in the present study, may have therapeutic implications in total joint replacement.
引用
收藏
页码:936 / 944
页数:9
相关论文
共 61 条
[1]   Formation of a mandibular condyle in vitro by tissue engineering [J].
Abukawa, H ;
Terai, H ;
Hannouche, D ;
Vacanti, JP ;
Kaban, LB ;
Troulis, MJ .
JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2003, 61 (01) :94-100
[2]   Adult stem cell driven genesis of human-shaped articular condyle [J].
Alhadlaq, A ;
Elisseeff, JH ;
Hong, L ;
Williams, CG ;
Caplan, AI ;
Sharma, B ;
Kopher, RA ;
Tomkoria, S ;
Lennon, DP ;
Lopez, A ;
Mao, JJ .
ANNALS OF BIOMEDICAL ENGINEERING, 2004, 32 (07) :911-923
[3]   Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells [J].
Alhadlaq, A ;
Mao, JJ .
JOURNAL OF DENTAL RESEARCH, 2003, 82 (12) :951-956
[4]   In situ forming degradable networks and their application in tissue engineering and drug delivery [J].
Anseth, KS ;
Metters, AT ;
Bryant, SJ ;
Martens, PJ ;
Elisseeff, JH ;
Bowman, CN .
JOURNAL OF CONTROLLED RELEASE, 2002, 78 (1-3) :199-209
[5]   MONOCLONAL-ANTIBODIES AGAINST OSTEONECTIN SHOW CONSERVATION OF EPITOPES ACROSS SPECIES [J].
BOLANDER, ME ;
ROBEY, PG ;
FISHER, LW ;
CONN, KM ;
PRABHAKAR, BS ;
TERMINE, JD .
CALCIFIED TISSUE INTERNATIONAL, 1989, 45 (02) :74-80
[6]   Tissue engineered bone: Measurement of nutrient transport in three-dimensional matrices [J].
Botchwey, EA ;
Dupree, MA ;
Pollack, SR ;
Levine, EM ;
Laurencin, CT .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 67A (01) :357-367
[7]   Articular cartilage engineering with autologous chondrocyte transplantation -: A review of recent developments [J].
Brittberg, M ;
Peterson, L ;
Sjögren-Jansson, E ;
Tallheden, T ;
Lindahl, A .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2003, 85A :109-115
[8]   Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering [J].
Burdick, JA ;
Anseth, KS .
BIOMATERIALS, 2002, 23 (22) :4315-4323
[9]   Effects of biomechanical stress on bones in animals [J].
Burr, DB ;
Robling, AG ;
Turner, CH .
BONE, 2002, 30 (05) :781-786
[10]   MESENCHYMAL STEM-CELLS [J].
CAPLAN, AI .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (05) :641-650