Image Sharpening via Sobolev Gradient Flows

被引:30
作者
Calder, J. [1 ]
Mansouri, A. [1 ]
Yezzi, A. [2 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[2] Georgia Tech, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2010年 / 3卷 / 04期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
image diffusion; partial differential equations; gradient descent; gradient ascent; Sobolev spaces; image sharpening; ANISOTROPIC DIFFUSION; EDGE-DETECTION; MULTIVALUED IMAGES; RESTORATION; ENHANCEMENT; SPACE;
D O I
10.1137/090771260
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motivated by some recent work in active contour applications, we study the use of Sobolev gradients for PDE-based image diffusion and sharpening. We begin by studying, for the case of isotropic diffusion, the gradient descent/ascent equation obtained by modifying the usual metric on the space of images, which is the L-2 metric, to a Sobolev metric. We present existence and uniqueness results for the Sobolev isotropic diffusion, derive a number of maximum principles, and show that the differential equations are stable and well-posed both in the forward and backward directions. This allows us to apply the Sobolev flow in the backward direction for sharpening. Favorable comparisons to the well-known shock filter for sharpening are demonstrated. Finally, we continue to exploit this same well-posed behavior both forward and backward in order to formulate new constrained gradient flows on higher order energy functionals which preserve the first order energy of the original image for interesting combined smoothing and sharpening effects.
引用
收藏
页码:981 / 1014
页数:34
相关论文
共 39 条
[1]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION .2. [J].
ALVAREZ, L ;
LIONS, PL ;
MOREL, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :845-866
[2]   SIGNAL AND IMAGE-RESTORATION USING SHOCK FILTERS AND ANISOTROPIC DIFFUSION [J].
ALVAREZ, L ;
MAZORRA, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :590-605
[3]  
[Anonymous], 1998, GRADUATE STUD MATH
[4]  
[Anonymous], 1993, An Introduction to-Convergence
[5]  
[Anonymous], 1983, P INT JOINT C ART IN, DOI DOI 10.1007/978-3-8348-9190-729
[6]  
[Anonymous], ANAL FONCTIONNELLE T
[7]  
[Anonymous], 2000, ELLIPTIC PARTIAL DIF
[8]  
Aubert G., 2006, APPL MATH SCI
[9]   Fractional-order anisotropic diffusion for image denoising [J].
Bai, Jian ;
Feng, Xiang-Chu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) :2492-2502
[10]  
Brezis H., 1975, N HOLLAND MATH STUD, V5