Enhanced stiffness modeling identification and characterization for robot manipulators

被引:256
作者
Alici, G [1 ]
Shirinzadeh, B
机构
[1] Univ Wollongong, Sch Mech Mat & Mechatron Engn, Wollongong, NSW 2522, Australia
[2] Monash Univ, Dept Mech Engn, Robot & Mechatron Res Lab, Melbourne, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
compliance/force control; manipulator kinematic; stiffness identification; stiffness modeling;
D O I
10.1109/TRO.2004.842347
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper presents the enhanced stiffness modeling and analysis of robot manipulators, and a methodology for their stiffness identification and characterization. Assuming that the manipulator links are infinitely stiff, the enhanced stiffness model contains: 1) the passive and active stiffness of the joints and 2) the active stiffness created by the change in the manipulator configuration, and by external force vector acting upon the manipulator end point. The stiffness formulation not accounting for the latter is known as conventional stiffness formulation, which is obviously not complete and is valid only when: 1) the manipulator is in an unloaded quasistatic configuration and 2) the manipulator Jacobian matrix is constant throughout the workspace. The experimental system considered in this study is a Motoman SK 120 robot manipulator with a closed-chain mechanism. While the deflection of the manipulator end point under a range of external forces is provided by a high precision laser measurement system, a wrist force/torque sensor measures the external forces. Based on the experimental data and the enhanced stiffness model, the joint stiffness values are first identified. These stiffness values are then used to prove that conventional stiffness modeling is incomplete. Finally, they are employed to characterize stiffness properties of the robot manipulator. It has been found that although the component of the stiffness matrix differentiating the enhanced stiffness model from the conventional one is not always positive definite, the resulting stiffness matrix can still be positive definite. This follows that stability of the stiffness matrix is not influenced by this stiffness component. This study contributes to the previously reported work from the point of view of using the enhanced stiffness model for stiffness identification, verification and characterization, and of new experimental results proving that the conventional stiffness matrix is not complete and is valid under certain assumptions.
引用
收藏
页码:554 / 564
页数:11
相关论文
共 25 条
[1]  
AHCI G, 1994, IROS '94 - INTELLIGENT ROBOTS AND SYSTEMS: ADVANCED ROBOTIC SYSTEMS AND THE REAL WORLD, VOLS 1-3, P1618, DOI 10.1109/IROS.1994.407640
[2]  
Alici G, 2003, IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, P3588
[3]   STATIC FRICTION EFFECTS DURING HARD-ON-HARD CONTACT TASKS AND THEIR IMPLICATIONS FOR MANIPULATOR DESIGN [J].
ALICI, G ;
DANIEL, RW .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1994, 13 (06) :508-520
[4]  
ALICI G, 2003, 7 INT C AUT TECHN, P699
[5]   Passive Compliance from Robot Limbs and its Usefulness in Robotic Automation [J].
Marcelo H. Ang Jr. ;
Wei Wang ;
Robert N. K. Loh ;
Teck-Seng Low .
Journal of Intelligent and Robotic Systems, 1997, 20 (1) :1-21
[6]   SPECIFYING AND ACHIEVING PASSIVE COMPLIANCE BASED ON MANIPULATOR STRUCTURE [J].
ANG, MH ;
ANDEEN, GB .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1995, 11 (04) :504-515
[7]   Specification of force-controlled actions in the ''Task Frame Formalism'' - A synthesis [J].
Bruyninckx, H ;
DeSchutter, J .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1996, 12 (04) :581-589
[8]  
Bruyninckx H, 1998, IEEE INT CONF ROBOT, P2396, DOI 10.1109/ROBOT.1998.680699
[9]   Conservative congruence transformation for joint and Cartesian stiffness matrices of robotic hands and fingers [J].
Chen, SF ;
Kao, I .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2000, 19 (09) :835-847
[10]  
CHOI HR, 1994, IEEE INT CONF ROBOT, P689, DOI 10.1109/ROBOT.1994.351406