Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates

被引:70
作者
van der Ploeg, JR [1 ]
Cummings, NJ
Leisinger, T
Connerton, IF
机构
[1] ETH Zentrum, Inst Mikrobiol, CH-8092 Zurich, Switzerland
[2] Inst Food Res, Dept Food & Macromol Sci, Reading Lab, Reading RG6 6BZ, Berks, England
来源
MICROBIOLOGY-SGM | 1998年 / 144卷
关键词
sulfonate; sulfate starvation; Bacillus subtilis; cysteine biosynthesis; ABC transporter;
D O I
10.1099/00221287-144-9-2555
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A 5 kb region upstream of katA at 82 degrees on the Bacillus subtilis chromosome contains five ORFs organized in an operon-like structure. Based on sequence similarity, three of the ORFs are likely to encode an ABC transport system (ssuBAC) and another to encode a monooxygenase (ssuD). The deduced amino acid sequence of the last ORF (ygaN) shows no similarity to any known protein. B. subtilis can utilize a range of aliphatic sulfonates such as alkanesulfonates, taurine, isethionate and sulfoacetate as a source of sulfur, but not when ssuA and ssuC are disrupted by insertion of a neomycin-resistance gene. Utilization of aliphatic sulfonates was not affected in a strain lacking 3'-phosphoadenosine 5'-phosphosulfate (PAPS) sulfotransferase, indicating that sulfate is not an intermediate in the assimilation of sulfonate-sulfur. Sulfate or cysteine prevented expression of beta-galactosidase from a transcriptional ssuD ::lacZ fusion. It is proposed that ssuBACD encode a system for ATP-dependent transport of alkanesulfonates and an oxygenase required for their desulfonation.
引用
收藏
页码:2555 / 2561
页数:7
相关论文
共 34 条
[1]   REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS [J].
ANAGNOSTOPOULOS, C ;
SPIZIZEN, J .
JOURNAL OF BACTERIOLOGY, 1961, 81 (05) :741-&
[2]  
Ausubel F. M., 1994, CURRENT PROTOCOLS MO
[3]  
AUTRY AR, 1990, BIOL FERT SOILS, V10, P50
[4]  
BEIL S, 1995, EUR J BIOCHEM, V229, P385, DOI 10.1111/j.1432-1033.1995.tb20479.x
[5]   The assimilation of sulfur from multiple sources and its correlation with expression of the sulfate-starvation-induced stimulon in Pseudomonas putida S-313 [J].
Beil, S ;
Kertesz, MA ;
Leisinger, T ;
Cook, AM .
MICROBIOLOGY-UK, 1996, 142 :1989-1995
[6]   CLONING AND ANALYSIS OF STRUCTURAL GENES FROM STREPTOMYCES-PRISTINAESPIRALIS ENCODING ENZYMES INVOLVED IN THE CONVERSION OF PRISTINAMYCIN-IIB TO PRISTINAMYCIN-IIA (PIIA) - PIIA SYNTHASE AND NADH-RIBOFLAVIN 5'-PHOSPHATE OXIDOREDUCTASE [J].
BLANC, V ;
LAGNEAUX, D ;
DIDIER, P ;
GIL, P ;
LACROIX, P ;
CROUZET, J .
JOURNAL OF BACTERIOLOGY, 1995, 177 (18) :5206-5214
[7]   The Bacillus subtilis 168 chromosome from sspE to katA [J].
Cummings, NJ ;
Connerton, IF .
MICROBIOLOGY-UK, 1997, 143 :1855-1859
[8]  
Cutting Simon M., 1994, P348
[9]   A COMPREHENSIVE SET OF SEQUENCE-ANALYSIS PROGRAMS FOR THE VAX [J].
DEVEREUX, J ;
HAEBERLI, P ;
SMITHIES, O .
NUCLEIC ACIDS RESEARCH, 1984, 12 (01) :387-395
[10]   Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli [J].
Eichhorn, E ;
vanderPloeg, JR ;
Kertesz, MA ;
Leisinger, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (37) :23031-23036