Sepsis and endotoxin (LPS or lipopolysaccharide) injection induce a state of growth hormone (GH) resistance leading to decreased circulating insulin-like growth factor (IGF)-I. Because the proinflammatory cytokines tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta inhibit the GH-stimulated IGF-I expression in vitro, it was tempting to speculate that these two cytokines might play an important role in the reduction of circulating IGF-I levels caused by LPS. Pentoxifylline, a methylxanthine usually used in the treatment of peripheral arterial circulaton, disorders, has been reported to inhibit TNF-alpha synthesis. The goal of our study was to investigate whether inhibition of TNF-alpha production by pentoxifylline could prevent the decrease in IGF-I and the GH resistance caused by LPS injection. Because previous studies demonstrated that pentoxifylline can reduce muscle catabolism induced by sepsis, we also assessed whether pentoxifylline could exert its anti-catabolic effect by preventing the decrease in circulating IGF-I. LPS injection in rats decreased serum IGF-I (-45% at 12 h; P<0.01 vs time 0) and its liver nRNA (-67% at 12 h; P<0.01 vs time 0) while it induced circulating TNF-alpha, and IL-1beta and their hepatic expression (P<0.01). Pretreatment of LPS-treated animals by pentoxifylline abolished the LPS-induced rise in serum TNF-alpha (-98% at 90 inin; P<0.001 vs LPS alone) and to a lesser extent in serum IL-1beta (-44% at 3 h; not significant vs LPS alone). Despite its dramatic inhibitory effect on TNF-alpha induction, however, pentoxifylline failed to suppress both the decrease in IGF-I and the GH resistance induced by LPS in rats. These results suggest that mediators other than TNF-alpha, in particular IL-1beta or IL-6, could contribute to the GH resistance induced by LPS. They also suggest that the anticatabolic effect of pentoxifylline is not due to prevention of the decline of circulating IGF-I.