An important role for RUNX3 in human L1 transcription and retrotransposition

被引:134
作者
Yang, N
Zhang, L
Zhang, Y
Kazazian, HH [1 ]
机构
[1] Univ Penn, Sch Med, Dept Genet, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Res Reprod & Womens Hlth, Philadelphia, PA 19104 USA
关键词
D O I
10.1093/nar/gkg663
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
LINE-1s ((l) under bar ong (i) under bar nterspersed (n) under bar uclear (e) under bar lements-1) are abundant non-LTR retrotransposons that comprise 17% of the human genome. The 5' untranslated region (5'UTR) of human L1 (L1Hs) houses a poorly understood internal promoter. Here we report that mutations at a putative runt-domain transcription factor (RUNX) site (+83 to +101) in the 5'UTR decreased L1Hs transcription and retrotransposition in cell culture-based assays. Exogenous expression of RUNX3, but not the other two RUNX family members, RUNX1 and RUNX2, increased L1Hs transcription and retrotransposition, which were otherwise decreased by siRNAs targeting RUNX3 and a dominant negative RUNX. Further more, the specific interaction between RUNX3 and its binding site was demonstrated by an electrophoretic mobility shift assay (EMSA) using an anti-RUNX3 antibody. Interestingly, RUNX3 may also regulate the antisense promoter activity of L1Hs 5'UTR via another putative RUNX site (+526 to +508), as revealed by site-directed mutations and exogenous expression of RUNX factors. Our results indicate an important role for RUNX3 in L1Hs retrotransposition as well as transcription from its 5'UTR in both sense and antisense directions, and they should contribute to our understanding of the mechanism underlying L1Hs retrotransposition and its impact on the expression of adjacent cellular genes.
引用
收藏
页码:4929 / 4940
页数:12
相关论文
共 57 条
[51]   Initial sequencing and comparative analysis of the mouse genome [J].
Waterston, RH ;
Lindblad-Toh, K ;
Birney, E ;
Rogers, J ;
Abril, JF ;
Agarwal, P ;
Agarwala, R ;
Ainscough, R ;
Alexandersson, M ;
An, P ;
Antonarakis, SE ;
Attwood, J ;
Baertsch, R ;
Bailey, J ;
Barlow, K ;
Beck, S ;
Berry, E ;
Birren, B ;
Bloom, T ;
Bork, P ;
Botcherby, M ;
Bray, N ;
Brent, MR ;
Brown, DG ;
Brown, SD ;
Bult, C ;
Burton, J ;
Butler, J ;
Campbell, RD ;
Carninci, P ;
Cawley, S ;
Chiaromonte, F ;
Chinwalla, AT ;
Church, DM ;
Clamp, M ;
Clee, C ;
Collins, FS ;
Cook, LL ;
Copley, RR ;
Coulson, A ;
Couronne, O ;
Cuff, J ;
Curwen, V ;
Cutts, T ;
Daly, M ;
David, R ;
Davies, J ;
Delehaunty, KD ;
Deri, J ;
Dermitzakis, ET .
NATURE, 2002, 420 (6915) :520-562
[52]   Accurate positioning of RNA polymerase II on a natural TATA-less promoter is independent of TATA-binding-protein-associated factors and initiator binding proteins [J].
Weis, L ;
Reinberg, D .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (06) :2973-2984
[53]  
Westendorf JJ, 1999, J CELL BIOCHEM, P51
[54]   Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis [J].
Woolf, E ;
Xiao, CY ;
Fainaru, O ;
Lotem, J ;
Rosen, D ;
Negreanu, V ;
Bernstein, Y ;
Goldenberg, D ;
Brenner, O ;
Berke, G ;
Levanon, D ;
Groner, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (13) :7731-7736
[55]   Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo [J].
Yant, SR ;
Ehrhardt, A ;
Mikkelsen, JG ;
Meuse, L ;
Pham, T ;
Kay, MA .
NATURE BIOTECHNOLOGY, 2002, 20 (10) :999-1005
[56]   Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription [J].
Yu, F ;
Zingler, N ;
Schumann, G ;
Strätling, WH .
NUCLEIC ACIDS RESEARCH, 2001, 29 (21) :4493-4501
[57]   A RUNX2/PEBP2αA/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia [J].
Zhang, YW ;
Yasui, N ;
Ito, K ;
Huang, G ;
Fujii, M ;
Hanai, J ;
Nogami, H ;
Ochi, T ;
Miyazono, K ;
Ito, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (19) :10549-10554