Calderon's inverse problem for anisotropic conductivity in the plane

被引:114
作者
Astala, K
Päivärinta, L
Lassas, M
机构
[1] Helsinki Univ Technol, Inst Math, FIN-02015 Helsinki, Finland
[2] Univ Helsinki, Dept Math, SF-00100 Helsinki, Finland
基金
芬兰科学院;
关键词
inverse conductivity problem; anisotropic conductivity; non-smooth conductivity;
D O I
10.1081/PDE-200044485
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inverse conductivity problem for an anisotropic conductivity sigma is an element of L-infinity in bounded and unbounded domains. Also, we give applications of the results in the case when two sets of local boundary data are given.
引用
收藏
页码:207 / 224
页数:18
相关论文
共 39 条
[1]  
AHLFORS LV, 1987, WADSWORTH BROOKS COL
[2]   STABILITY FOR A MULTIDIMENSIONAL INVERSE SPECTRAL THEOREM [J].
ALESSANDRINI, G ;
SYLVESTER, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (05) :711-736
[3]  
Alessandrini G., 1988, Appl. Anal., V27, P153, DOI [10.1080/00036818808839730, DOI 10.1080/00036818808839730]
[4]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[5]  
ASTALA K, 2003, IN PRESS ANN MATH
[6]   Stability of the inverse conductivity problem in the plane for less regular conductivities [J].
Barceló, JA ;
Barceló, T ;
Ruiz, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 173 (02) :231-270
[7]   Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions [J].
Brown, RM ;
Uhlmann, GA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :1009-1027
[8]   Global uniqueness in the impedance-imaging problem for less regular conductivities [J].
Brown, RM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1049-1056
[9]  
Calderon A.P., 1980, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, 1980, P65, DOI DOI 10.1590/S0101-82052006000200002
[10]   Electrical impedance tomography [J].
Cheney, M ;
Isaacson, D ;
Newell, JC .
SIAM REVIEW, 1999, 41 (01) :85-101