A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus:: cloning, overexpression and properties

被引:116
作者
Merone, L [1 ]
Mandrich, L [1 ]
Rossi, M [1 ]
Manco, G [1 ]
机构
[1] CNR, Ist Biochim Prot, I-80131 Naples, Italy
关键词
phosphotriesterase; organophosphates; pesticides; Sulfolobus solfataricus; thermostability;
D O I
10.1007/s00792-005-0445-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A new gene from the hyperthermophilic archaeon Sulfolobus solfataricus MT4, coding for a putative protein reported to show sequence identity with the phosphotriesterase-related protein family (PHP), was cloned by means of the polymerase chain reaction from the S. solfataricus genomic DNA. In order to analyse the biochemical properties of the protein an overexpression system in Escherichia coli was established. The recombinant protein, expressed in soluble form at 5 mg/l of E. coli culture, was purified to homogeneity and characterized. In contrast with its mesophilic E. coli counterpart that was devoid of any tested activity, the S. solfataricus enzyme was demonstrated to have a low paraoxonase activity. This activity was dependent from metal cations with Co2+, Mg2+ and Ni2+ being the most effective and was thermophilic and thermostable. The enzyme was inactivated with EDTA and o-phenantroline. A reported inhibitor for Pseudomonas putida phosphotriesterase (PTE) had no effect on the S. solfataricus paraoxonase. The importance of a stable paraoxonase for detoxification of chemical warfare agents and agricultural pesticides will be discussed.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 45 条
[1]   Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase [J].
Aubert, SD ;
Li, YC ;
Raushel, FM .
BIOCHEMISTRY, 2004, 43 (19) :5707-5715
[2]   Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme [J].
Bencharit, S ;
Morton, CL ;
Xue, Y ;
Potter, PM ;
Redinbo, MR .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (05) :349-356
[3]   The binding of substrate analogs to phosphotriesterase [J].
Benning, MM ;
Hong, SB ;
Raushel, FM ;
Holden, HM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (39) :30556-30560
[4]   3-DIMENSIONAL STRUCTURE OF THE BINUCLEAR METAL CENTER OF PHOSPHOTRIESTERASE [J].
BENNING, MM ;
KUO, JM ;
RAUSHEL, FM ;
HOLDEN, HM .
BIOCHEMISTRY, 1995, 34 (25) :7973-7978
[5]   High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta [J].
Benning, MM ;
Shim, H ;
Raushel, FM ;
Holden, HM .
BIOCHEMISTRY, 2001, 40 (09) :2712-2722
[6]   3-DIMENSIONAL STRUCTURE OF PHOSPHOTRIESTERASE - AN ENZYME CAPABLE OF DETOXIFYING ORGANOPHOSPHATE NERVE AGENTS [J].
BENNING, MM ;
KUO, JM ;
RAUSHEL, FM ;
HOLDEN, HM .
BIOCHEMISTRY, 1994, 33 (50) :15001-15007
[7]   PHOSPHOTRIESTERASES OF FLAVOBACTERIUM SP [J].
BROWN, KA .
SOIL BIOLOGY & BIOCHEMISTRY, 1980, 12 (02) :105-112
[8]   A NEW CLONING VECTOR AND EXPRESSION STRATEGY FOR GENES ENCODING PROTEINS TOXIC TO ESCHERICHIA-COLI [J].
BROWN, WC ;
CAMPBELL, JL .
GENE, 1993, 127 (01) :99-103
[9]   Biochemical characterization and crystallographic structure of an Escherichia coli protein from the phosphotriesterase gene family [J].
Buchbinder, JL ;
Stephenson, RC ;
Dresser, MJ ;
Pitera, JW ;
Scanlan, TS ;
Fletterick, RJ .
BIOCHEMISTRY, 1998, 37 (15) :5096-5106
[10]   LIMITS OF DIFFUSION IN THE HYDROLYSIS OF SUBSTRATES BY THE PHOSPHOTRIESTERASE FROM PSEUDOMONAS-DIMINUTA [J].
CALDWELL, SR ;
NEWCOMB, JR ;
SCHLECHT, KA ;
RAUSHEL, FM .
BIOCHEMISTRY, 1991, 30 (30) :7438-7444