The Hirsch index of a shifted Lotka function and its relation with the impact factor

被引:19
作者
Egghe, Leo [1 ,2 ]
Rousseau, Ronald [2 ,3 ,4 ]
机构
[1] Univ Hasselt UHasselt, B-3590 Diepenbeek, Belgium
[2] Univ Antwerp, IBW, B-2000 Antwerp, Belgium
[3] KHBO Assoc KU Leuven, Fac Engn Technol, B-8400 Oostende, Belgium
[4] Katholieke Univ Leuven, Dept Math, B-3000 Heverlee, Belgium
来源
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY | 2012年 / 63卷 / 05期
关键词
bibliometrics; H-INDEX; MODEL;
D O I
10.1002/asi.22617
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Based on earlier results about the shifted Lotka function, we prove an implicit functional relation between the Hirsch index (h-index) and the total number of sources (T). It is shown that the corresponding function, h(T), is concavely increasing. Next, we construct an implicit relation between the h-index and the impact factor IF (an average number of items per source). The corresponding function h(IF) is increasing and we show that if the parameter C in the numerator of the shifted Lotka function is high, then the relation between the h-index and the impact factor is almost linear.
引用
收藏
页码:1048 / 1053
页数:6
相关论文
共 11 条
[11]  
Lotka A.J., 1926, J Wash Acad Sci, V16, P317