Raman spectroscopic study of the hydrogen-arsenate mineral pharmacolite Ca(AsO3OH)•2H2O - implications for aquifer and sediment remediation

被引:22
作者
Frost, Ray L. [1 ]
Bahfenne, Silmarilly [1 ]
Cejka, Jiri [1 ,2 ]
Sejkora, Jiri [2 ]
Plasil, Jakub [2 ]
Palmer, Sara J. [1 ]
机构
[1] Queensland Univ Technol, Inorgan Mat Res Program, Sch Phys & Chem Sci, Brisbane, Qld 4001, Australia
[2] Natl Museum, CZ-11579 Prague 1, Czech Republic
基金
澳大利亚研究理事会;
关键词
pharmacolite; geminite; acid-arsenate; arsenate; Raman spectroscopy; ALPHA-GALLIUM OXYHYDROXIDE; CARBONATE MINERALS; CRYSTAL-STRUCTURE; URANYL; COORDINATION; ANIONS; WATER; ACID;
D O I
10.1002/jrs.2556
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The removal of arsenate anions from aqueous media, sediments and wasted soils is of environmental significance. The reaction of gypsum with the arsenate anion results in pharmacolite mineral formation, together with related minerals. Raman and infrared (IR) spectroscopy have been used to study the mineral pharmacolite Ca(AsO3OH)center dot 2H(2)O. The mineral is characterised by an intense Raman band at 865 cm(-1) assigned to the nu(1) (AsO3)(2-) symmetric stretching mode. The equivalent IR band is found at 864 cm(-1). The low-intensity Raman bands in the range from 844 to 886 cm(-1) provide evidence for nu(3) (AsO3) antisymmetric stretching vibrations. A series of overlapping bands in the 300-450 cm(-1) region are attributed to nu(2) and nu(4) (AsO3) bending modes. Prominent Raman bands at around 3187 cm(-1) are assigned to the OH stretching vibrations of hydrogen-bonded water molecules and the two sharp bands at 3425 and 3526 cm(-1) to the OH stretching vibrations of only weakly hydrogen-bonded hydroxyls in (AsO3OH)(2-) units. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:1348 / 1352
页数:5
相关论文
共 50 条
[1]  
[Anonymous], NEUES JB MINERAL MON
[2]  
Anthony J., 2000, Handbook of Mineralogy, VIV
[3]   Arsenic contamination at the Mole River Mine, northern New South Wales [J].
Ashley, PM ;
Lottermoser, BG .
AUSTRALIAN JOURNAL OF EARTH SCIENCES, 1999, 46 (06) :861-874
[4]  
BRASSE R, 1970, B SOC FRANC MINERAL, V93, P2069
[5]  
CHURCH AH, 1995, MINERAL MAG, V11, P1
[6]  
DESCHULTEN AB, 1904, B SOC FRANC MINERAL, V26, P18
[7]   CRYSTAL STRUCTURE OF PHARMACOLITE, CAH(ASO4).2H2O [J].
FERRARIS, G .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1969, B 25 :1544-&
[8]   DETERMINATION OF HYDROGEN ATOM POSITIONS IN CRYSTAL STRUCTURE OF PHARMACOLITE, CAHASO4.2H2O, BY NEURTRON DIFFRACTION [J].
FERRARIS, G ;
JONES, DW ;
YERKESS, J .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1971, B 27 (FEB15) :349-&
[9]   Raman spectroscopic study of the schmiederite Pb2Cu2[(OH)4|SeO3|SeO4] [J].
Frost, Ray L. ;
Keefe, Eloise C. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (10) :1408-1412
[10]   Raman spectroscopic study of the uranyl selenite mineral marthozite Cu[(UO2)3(SeO3)2O2].8H2O [J].
Frost, Ray L. ;
Cejka, Jiri ;
Keefe, Eloise C. ;
Dickfos, Marilla J. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (10) :1413-1418