Raman spectroscopic study of the hydrogen-arsenate mineral pharmacolite Ca(AsO3OH)•2H2O - implications for aquifer and sediment remediation

被引:22
作者
Frost, Ray L. [1 ]
Bahfenne, Silmarilly [1 ]
Cejka, Jiri [1 ,2 ]
Sejkora, Jiri [2 ]
Plasil, Jakub [2 ]
Palmer, Sara J. [1 ]
机构
[1] Queensland Univ Technol, Inorgan Mat Res Program, Sch Phys & Chem Sci, Brisbane, Qld 4001, Australia
[2] Natl Museum, CZ-11579 Prague 1, Czech Republic
基金
澳大利亚研究理事会;
关键词
pharmacolite; geminite; acid-arsenate; arsenate; Raman spectroscopy; ALPHA-GALLIUM OXYHYDROXIDE; CARBONATE MINERALS; CRYSTAL-STRUCTURE; URANYL; COORDINATION; ANIONS; WATER; ACID;
D O I
10.1002/jrs.2556
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The removal of arsenate anions from aqueous media, sediments and wasted soils is of environmental significance. The reaction of gypsum with the arsenate anion results in pharmacolite mineral formation, together with related minerals. Raman and infrared (IR) spectroscopy have been used to study the mineral pharmacolite Ca(AsO3OH)center dot 2H(2)O. The mineral is characterised by an intense Raman band at 865 cm(-1) assigned to the nu(1) (AsO3)(2-) symmetric stretching mode. The equivalent IR band is found at 864 cm(-1). The low-intensity Raman bands in the range from 844 to 886 cm(-1) provide evidence for nu(3) (AsO3) antisymmetric stretching vibrations. A series of overlapping bands in the 300-450 cm(-1) region are attributed to nu(2) and nu(4) (AsO3) bending modes. Prominent Raman bands at around 3187 cm(-1) are assigned to the OH stretching vibrations of hydrogen-bonded water molecules and the two sharp bands at 3425 and 3526 cm(-1) to the OH stretching vibrations of only weakly hydrogen-bonded hydroxyls in (AsO3OH)(2-) units. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:1348 / 1352
页数:5
相关论文
共 50 条
[11]   Raman spectroscopy of hydroxy nickel carbonate minerals nullaginite and zaratite [J].
Frost, Ray L. ;
Dickfos, Marilla J. ;
Reddy, B. Jagannadha .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (09) :1250-1256
[12]   Raman spectroscopic study of the uranyl mineral, compreignacite, K2[(UO2)3O2(OH)3]2•7H2O [J].
Frost, Ray L. ;
Dickfos, Marilla J. ;
Cejka, Jiri .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (09) :1158-1161
[13]   Synthesis and Raman spectroscopic characterisation of the oxalate mineral wheatleyite Na2Cu2+(C2O4)2•2H2O [J].
Frost, Ray L. ;
Locke, Ashley ;
Martens, Wayde N. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (07) :901-908
[14]   Raman spectroscopy of the nickel silicate mineral pecoraite - an analogue of chrysotile (asbestos) [J].
Frost, Ray L. ;
Reddy, B. Jagannadha ;
Dickfos, Marilia J. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (07) :909-913
[15]   Raman and infrared spectroscopic study of the molybdate-containing uranyl mineral calcurmolite [J].
Frost, Ray L. ;
Cejka, Jiri ;
Dickfos, Marilla J. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (07) :779-785
[16]   Raman spectroscopic study of the uranyl carbonate mineral zellerite [J].
Frost, Ray L. ;
Dickfos, Marilla J. ;
Cejka, Jiri .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (05) :582-586
[17]   Raman spectroscopic study of the uranyl phosphate minerals phosphuranylite and yingjiangite [J].
Frost, Ray L. ;
Cejka, Jiri ;
Ayoko, Godwin .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (04) :495-502
[18]   Raman spectroscopic study of the uranyl carbonate mineral voglite [J].
Frost, Ray L. ;
Cejka, Jiri ;
Ayoko, Godwin A. ;
Dickfos, Marilla J. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (03) :374-379
[19]   Raman spectroscopy of smithsonite [J].
Frost, Ray L. ;
Hales, Matt C. ;
Wain, Daria L. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (01) :108-114
[20]   Raman and mid-IR spectroscopic study of the magnesium carbonate minerals - brugnatellite and coalingite [J].
Frost, Ray L. ;
Bahfenne, Silmarilly .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (04) :360-365