Benchmarking of dynamic Bayesian networks inferred from stochastic time-series data

被引:7
作者
David, Lawrence A. [2 ]
Wiggins, Chris H. [1 ,3 ]
机构
[1] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY 10027 USA
[2] Fu Fdn Engn & Appl Sci, Dept Biomed Engn, New York, NY 10027 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
来源
REVERSE ENGINEERING BIOLOGICAL NETWORKS: OPPORTUNITIES AND CHALLENGES IN COMPUTATIONAL METHODS FOR PATHWAY INFERENCE | 2007年 / 1115卷
关键词
benchmarking; dynamic Bayesian networks; stochastic; time-series; network inference; gene networks;
D O I
10.1196/annals.1407.009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We seek to quantify the failure and success of dynamic Bayesian networks (DBNs), a popular tool for reverse-engineering networks from time-series data. In particular, we focus on data generated by continuous time processes (e.g., genetic expression) and sampled at discrete times. To facilitate analysis and interpretation, we employ a "minimal model" to generate arbitrary abundances of stochastic data from networks of known topologies, which are then sub-sampled and in some cases interpolated. We find that DBNs perform relatively poorly when given data sets comparable to those used for genetic network inference. Interpolation does not appear to improve inference success. Finally, we contrast the performance of DBNs with results from linear regression on our synthetic data.
引用
收藏
页码:90 / 101
页数:12
相关论文
共 16 条
[1]   Analyzing time series gene expression data [J].
Bar-Joseph, Z .
BIOINFORMATICS, 2004, 20 (16) :2493-2503
[2]  
COOPER GF, 1992, MACH LEARN, V9, P309, DOI 10.1007/BF00994110
[3]   Genetic network inference: from co-expression clustering to reverse engineering [J].
D'haeseleer, P ;
Liang, SD ;
Somogyi, R .
BIOINFORMATICS, 2000, 16 (08) :707-726
[4]   Inferring cellular networks using probabilistic graphical models [J].
Friedman, N .
SCIENCE, 2004, 303 (5659) :799-805
[5]  
Heckerman D., 1999, LEARNING GRAPHICAL M
[6]   Unravelling small world networks [J].
Higham, DJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) :61-74
[7]  
KAYAALP M, 2002, P 18 ANN C UNC AI UA, P252
[8]  
Le Phillip P, 2004, In Silico Biol, V4, P335
[9]   Bayesian classification and feature reduction using uniform Dirichlet priors [J].
Lynch, RS ;
Willett, PK .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2003, 33 (03) :448-464
[10]   Gene networks inference using dynamic Bayesian networks [J].
Perrin, Bruno-Edouard ;
Ralaivola, Liva ;
Mazurie, Aurelien ;
Bottani, Samuele ;
Mallet, Jacques ;
d'Alche-Buc, Florence .
BIOINFORMATICS, 2003, 19 :II138-II148