Proteome analysis of Escherichia coli using high-performance liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry

被引:6
作者
Ihling, C [1 ]
Sinz, A [1 ]
机构
[1] Univ Leipzig, Biotechnol Biomed Ctr, Fac Chem & Mineral, D-04103 Leipzig, Germany
关键词
Escherichia coli; fourier transform ion cyclotron resonance mass spectrometry; nano-high performance liquid chromatography; proteome analysis;
D O I
10.1002/pmic.200401122
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The basic problem of complexity poses a significant challenge for proteomic studies. To date two-dimensional gel electrophoresis (2-DE) followed by enzymatic in-gel digestion of the peptides, and subsequent identification by mass spectrometry (MS) is the most commonly used method to analyze complex protein mixtures. However, 2-DE is a slow and labor-intensive technique, which is not able to resolve all proteins of a proteome. To overcome these limitations gel-free approaches are developed based on high performance liquid chromatography (HPLC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The high resolution and excellent mass accuracy of FT-ICR MS provides a basis for simultaneous analysis of numerous compounds. in the present study, a small protein subfraction of an Escherichia coli cell lysate was prepared by size-exclusion chromatography and proteins were analyzed using C4 reversed phase (RP)-HPLC for pre-separation followed by C18 RP nanoHPLC/nanoESI FT-ICR MS for analysis of the peptide mixtures after tryptic digestion of the protein fractions. We identified 231 proteins and thus demonstrated that a combination of two RP separation steps - one on the protein and one on the peptide level - in combination with high-resolution FT-ICR MS has the potential to become a powerful method for global proteomics studies.
引用
收藏
页码:2029 / 2042
页数:14
相关论文
共 44 条
[1]   Mass spectrometry in proteomics [J].
Aebersold, R ;
Goodlett, DR .
CHEMICAL REVIEWS, 2001, 101 (02) :269-295
[2]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[3]  
Belov ME, 2000, J AM SOC MASS SPECTR, V11, P19, DOI 10.1016/S1044-0305(99)00121-X
[4]   Peptide mapping of proteins in human body fluids using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry [J].
Bergquist, J ;
Palmblad, M ;
Wetterhall, M ;
Håkansson, P ;
Markides, KE .
MASS SPECTROMETRY REVIEWS, 2002, 21 (01) :2-15
[5]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[6]   High mass-measurement accuracy and 100% sequence coverage of enzymatically digested bovine serum albumin from an ESI-FTICR mass spectrum [J].
Bruce, JE ;
Anderson, GA ;
Wen, J ;
Harkewicz, R ;
Smith, RD .
ANALYTICAL CHEMISTRY, 1999, 71 (14) :2595-2599
[7]  
*BRUK DALT, 1996, BIOAPEX US MAN V 1 1
[8]   FOURIER-TRANSFORM ION-CYCLOTRON RESONANCE SPECTROSCOPY [J].
COMISAROW, MB ;
MARSHALL, AG .
CHEMICAL PHYSICS LETTERS, 1974, 25 (02) :282-283
[9]   Micro-high-performance liquid chromatography/Fourier transform mass spectrometry with electron-capture dissociation for the analysis of protein enzymatic digests [J].
Davidson, W ;
Frego, L .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2002, 16 (10) :993-998
[10]   ELECTROSPRAY IONIZATION FOR MASS-SPECTROMETRY OF LARGE BIOMOLECULES [J].
FENN, JB ;
MANN, M ;
MENG, CK ;
WONG, SF ;
WHITEHOUSE, CM .
SCIENCE, 1989, 246 (4926) :64-71