A density result in two-dimensional linearized elasticity, and applications

被引:91
作者
Chambolle, A [1 ]
机构
[1] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75775 Paris 16, France
关键词
D O I
10.1007/s00205-002-0240-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that in a two-dimensional bounded open set whose complement has a finite number of connected components, the vector fields u is an element of H(1)(Omega; R(2)) are dense in the space of fields whose symmetrized gradient e(u) is in L(2)(Omega; R(4)). This allows us to show the continuity of some linearized elasticity problems with respect to variations of the set, with applications to shape optimization or the study of crack evolution.
引用
收藏
页码:211 / 233
页数:23
相关论文
共 29 条
[1]  
ADAMS DR, 1996, FUNCTION SPACES POTE
[2]  
ALLAIRE G, 1993, NATO ADV SCI INST SE, V227, P207
[3]   Shape optimization by the homogenization method [J].
Allaire, G ;
Bonnetier, E ;
Francfort, G ;
Jouve, F .
NUMERISCHE MATHEMATIK, 1997, 76 (01) :27-68
[4]  
[Anonymous], 2000, ANN SCUOLA NORM-SCI
[5]   Stability of the Neumann problem for variations of the boundary [J].
Bucur, D ;
Varchon, N .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (05) :371-374
[6]  
BUCUR D, 1994, CR ACAD SCI I-MATH, V319, P57
[7]   A duality approach or the boundary variation of Neumann problems [J].
Bucur, D ;
Varchon, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (02) :460-477
[8]  
BUCUR D, 1994, CR ACAD SCI I-MATH, V318, P795
[9]   On the problem of optimal cutting [J].
Bucur, D ;
Buttazzo, G ;
Varchon, N .
SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (01) :157-167
[10]   Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets. [J].
Chambolle, A ;
Doveri, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :811-840