Deterministic addressing of nanoscale devices assembled at sublithographic pitches

被引:13
作者
DeHon, A [1 ]
机构
[1] CALTECH, Dept Comp Sci, Pasadena, CA 91125 USA
关键词
defect tolerance; electronic nanotechnology; molecular electronics; stochastic assembly;
D O I
10.1109/TNANO.2005.858587
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multiple techniques have now been proposed using random addressing to build demultiplexers which interface between the large pitch of lithographically patterned features and the smaller pitch of self-assembled sublithographic nanowires. At the same time, the relatively high defect rates expected for molecular-sized devices and wires dictate that we design architectures with spare components so we can map around defective elements. To accommodate and mask both of these effects, we introduce a programmable addressing scheme which can be used to provide deterministic addresses for decoders built with random nanoscale addressing and potentially defective wires. We describe how this programmable addressing scheme can be implemented with emerging, nanoscale building blocks and show how to build deterministically addressable memory banks. We characterize the area required for this programmable addressing scheme. For 2048 x 2048 memory banks, the area overhead for address correction is less than 33%, delivering net memory densities around 10(11) b/cm(2).
引用
收藏
页码:681 / 687
页数:7
相关论文
共 20 条
[1]   Nanoscale molecular-switch crossbar circuits [J].
Chen, Y ;
Jung, GY ;
Ohlberg, DAA ;
Li, XM ;
Stewart, DR ;
Jeppesen, JO ;
Nielsen, KA ;
Stoddart, JF ;
Williams, RS .
NANOTECHNOLOGY, 2003, 14 (04) :462-468
[2]   A [2]catenane-based solid state electronically reconfigurable switch [J].
Collier, CP ;
Mattersteig, G ;
Wong, EW ;
Luo, Y ;
Beverly, K ;
Sampaio, J ;
Raymo, FM ;
Stoddart, JF ;
Heath, JR .
SCIENCE, 2000, 289 (5482) :1172-1175
[3]   Electronically configurable molecular-based logic gates [J].
Collier, CP ;
Wong, EW ;
Belohradsky, M ;
Raymo, FM ;
Stoddart, JF ;
Kuekes, PJ ;
Williams, RS ;
Heath, JR .
SCIENCE, 1999, 285 (5426) :391-394
[4]   Diameter-controlled synthesis of single-crystal silicon nanowires [J].
Cui, Y ;
Lauhon, LJ ;
Gudiksen, MS ;
Wang, JF ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2001, 78 (15) :2214-2216
[5]   Doping and electrical transport in silicon nanowires [J].
Cui, Y ;
Duan, XF ;
Hu, JT ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5213-5216
[6]   Experimental and theoretical investigation of nano-crystal and nitride-trap memory devices [J].
De Salvo, B ;
Ghibaudo, G ;
Pananakakis, G ;
Masson, P ;
Baron, T ;
Buffet, N ;
Fernandes, A ;
Guillaumot, B .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (08) :1789-1799
[7]   Nonphotolithographic nanoscale memory density prospects [J].
DeHon, A ;
Goldstein, SC ;
Kuekes, PJ ;
Lincoln, P .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (02) :215-228
[8]  
DeHon A, 2004, NANO, QUANTUM AND MOLECULAR COMPUTING: IMPLICATIONS TO HIGH LEVEL DESIGN AND VALIDATION, P213, DOI 10.1007/1-4020-8068-9_7
[9]   Stochastic assembly of sublithographic nanoscale interfaces [J].
DeHon, A ;
Lincoln, P ;
Savage, JE .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2003, 2 (03) :165-174
[10]   Array-based architecture for FET-based, nanoscale electronics [J].
DeHon, A .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2003, 2 (01) :23-32