Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function

被引:48
作者
Campbell, TL [1 ]
Daigle, DM [1 ]
Brown, ED [1 ]
机构
[1] McMaster Univ, Antimicrobial Res Ctr, Dept Biochem & Biomed Sci, Hamilton, ON L8N 3Z5, Canada
关键词
antibiotic; gene deletion; GTPase; polyribosome profile; ribosome; YloQ;
D O I
10.1042/BJ20041873
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present an analysis of the cellular phenotype and biochemical activity of a conserved bacterial GTPase of unknown function (YloQ and YjeQ in Bacillus subtilis and Escherichia coli respectively) using a collection of antibiotics of diverse mechanisms and chemical classes. We created a yloQ deletion strain, which exhibited a slow growth phenotype and formed chains of filamentous cells. Additionally, we constructed a conditional mutant in yloQ, where growth was dependent on inducible expression from a complementing copy of the gene. In phenotypic studies, depletion of yloQ sensitized cells to antibiotics that bind at the peptide channel or peptidyl transferase centre, providing the first chemical genetic evidence linking this GTPase to ribosome function. Additional experiments using these small-molecule probes in vitro revealed that aminoglycoside antibiotics severely affected a previously characterized ribosome-associated GTPase activity of purified, recombinant YjeQ from E. coli. None of the antibiotics tested competed with YjeQ for binding to 30 or 70 S ribosomes. A closer examination of YloQ depletion revealed that the polyribosome profiles were altered and that decreased expression of YloQ led to the accumulation of ribosomal subunits at the expense of intact 70 S ribosomes. The present study provides the first evidence showing that YloQ/YjeQ may be involved in several areas of cellular metabolism, including cell division and ribosome function.
引用
收藏
页码:843 / 852
页数:10
相关论文
共 43 条
[1]   Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes [J].
Aoki, H ;
Ke, LZ ;
Poppe, SM ;
Poel, TJ ;
Weaver, EA ;
Gadwood, RC ;
Thomas, RC ;
Shinabarger, DL ;
Ganoza, MC .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (04) :1080-1085
[2]   A genome-based approach for the identification of essential bacterial genes [J].
Arigoni, F ;
Talabot, F ;
Peitsch, M ;
Edgerton, MD ;
Meldrum, E ;
Allet, E ;
Fish, R ;
Jamotte, T ;
Curchod, ML ;
Loferer, H .
NATURE BIOTECHNOLOGY, 1998, 16 (09) :851-856
[3]   Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis:: Conditional complementation of a teichoic acid mutant [J].
Bhavsar, AP ;
Zhao, XM ;
Brown, ED .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (01) :403-410
[4]   Catalytic properties of mutant 23 S ribosomes resistant to oxazolidinones [J].
Bobkova, EV ;
Yan, YP ;
Jordan, DB ;
Kurilla, MG ;
Pompliano, DL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (11) :9802-9807
[5]   THE GTPASE SUPERFAMILY - A CONSERVED SWITCH FOR DIVERSE CELL FUNCTIONS [J].
BOURNE, HR ;
SANDERS, DA ;
MCCORMICK, F .
NATURE, 1990, 348 (6297) :125-132
[6]   Cell cycle arrest in era GTPase mutants:: a potential growth rate-regulated checkpoint in Escherichia coli [J].
Britton, RA ;
Powell, BS ;
Dasgupta, S ;
Sun, Q ;
Margolin, W ;
Lupski, JR ;
Court, DL .
MOLECULAR MICROBIOLOGY, 1998, 27 (04) :739-750
[7]   MURA (MURZ), THE ENZYME THAT CATALYZES THE FIRST COMMITTED STEP IN PEPTIDOGLYCAN BIOSYNTHESIS, IS ESSENTIAL IN ESCHERICHIA-COLI [J].
BROWN, ED ;
VIVAS, EI ;
WALSH, CT ;
KOLTER, R .
JOURNAL OF BACTERIOLOGY, 1995, 177 (14) :4194-4197
[8]   RNA methylation under heat shock control [J].
Bügl, H ;
Fauman, EB ;
Staker, BL ;
Zheng, FH ;
Kushner, SR ;
Saper, MA ;
Bardwell, JCA ;
Jakob, U .
MOLECULAR CELL, 2000, 6 (02) :349-360
[9]   Structural and biochemical analysis of the Obg GTP binding protein [J].
Buglino, J ;
Shen, V ;
Hakimian, P ;
Lima, CD .
STRUCTURE, 2002, 10 (11) :1581-1592
[10]   Function of the universally conserved bacterial GTPases [J].
Caldon, CE ;
March, PE .
CURRENT OPINION IN MICROBIOLOGY, 2003, 6 (02) :135-139